Skip to main content
Log in

Aplysia cys-loop Glutamate-Gated Chloride Channels Reveal Convergent Evolution of Ligand Specificity

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Among the members of the superfamily of cys-loop ligand-gated ion channels (LGICs) are receptors distinguished by the presence of two cys-loops in the ligand-binding domain, for example, the glycine receptor. Such receptors have thus far been cloned only from vertebrates and from ecdysozoa (arthropods and nematodes). We have now cloned and expressed two 2-cys-loop receptors from Aplysia californica, a lophotrocozoan, and have shown that they form homomeric glutamate receptors. We have also built up a database including the two receptors cloned here, previously cloned vertebrate and ecdysozoan 2-cys-loop receptors taken from GenBank, and the same type of receptors obtained by a search of recently cloned genomes, including two non-vertebrate chordates, an echinoderm, a crustacean, an annelid, and another mollusk. We subjected these receptors to phylogenetic analysis, alone and in combination with GABA-A receptors from the same phyla and from a recently cloned cnidarian. The phylogenetic analysis revealed the presence of two independent clades of glutamate receptors: one from lophotrocozoa and other from ecdysozoa, and suggests that the ancestors of the current 2-cys-loop receptor types diverged from the GABA-A receptors and from each other before the bilateria-cnidaria split. Finally, combining the results from the phylogenetic analysis with those obtained from an analysis of the 2-cys-loop receptors in light of recently published hypotheses concerning the glycine binding pocket, we predict that glycine receptors are not exclusively a vertebrate-receptor type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Beg AA, Jorgensen EM (2003) EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Cascio M (2004) Structure and function of the glycine receptor and related nicotinicoid receptors. J Biol Chem 279:19383–19386

    Article  PubMed  CAS  Google Scholar 

  • Connolly CN, Wafford K (2004) The Cys-loop superfamily of ligand-gated ion channels, the impact of receptor structure on function. Biochem Soc Trans 32:529–534

    Article  PubMed  CAS  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Ven der Ploeg LH, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

    Article  PubMed  CAS  Google Scholar 

  • Cully DF, Paress PS, Liu K, Schaeffer JM, Arena JP (1996) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem 271:20187–20191

    Article  PubMed  CAS  Google Scholar 

  • de Saint Jan D, David-Watine B, Korn H, Bregestovski P (2001) Activation of human α1 and α2 homomeric glycine receptors by taurine and GABA. J Physiol 535:741–755

    Article  PubMed  Google Scholar 

  • Dent JA (2006) Evidence for a diverse cys-loop ligand-gated ion channel superfamily in early bilateria. J Mol Evol 62:523–535

    Article  PubMed  CAS  Google Scholar 

  • Dent JA, David MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16:5867–5879

    Article  PubMed  CAS  Google Scholar 

  • Dent JA, Smith MM, Vassilatis DK, Avery L (2000) The genetics of ivermectin resistance in Caenorhabditis elegans. PNAS 97:2574–2679

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1794

    Article  PubMed  CAS  Google Scholar 

  • Eguchi Y, Ihara M, Ochi E, Shibata Y, Matsuda K, Fushiki S, Sugama H, Hamasaki Y, Niwa H, Wada M, Ozoe F, Ozoe Y (2006) Functional characterization of Musca glutamate- and GABA-gated chloride channels expressed independently and coexpressed in Xenopus oocytes. Insect Mol Biol 15:773–783

    Article  PubMed  CAS  Google Scholar 

  • Etter A, Cully DF, Schaeffer JM, Liu KK, Arena JP (1996) An amino acid substitution in the pore region of a glutamate-gated chloride channel enables the coupling of ligand binding to channel gating. J Biol Chem 271:16035–16039

    Article  PubMed  CAS  Google Scholar 

  • Evans CG, Alexeeva V, Rybak J, Karhunen T, Weiss KR, Cropper EC (1999) A pair of reciprocally inhibitory histaminergic sensory neurons are activated within the same phase of ingestive motor programs in Aplysia. J Neurosci 19:845–858

    PubMed  CAS  Google Scholar 

  • Galzi J-L, Revah F, Black D, Goeldner M, Hirth C, Changeux J-P (1990) Identification of a novel amino acid-tyrosine 93 within the cholinergic ligand-binding sites of the acetylcholine receptor by photoaffinity labeling. J Biol Chem 265:10430–10437

    PubMed  CAS  Google Scholar 

  • Gisselmann G, Pusch H, Hovemann BT, Hatt H (2002) Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat Neurosci 5:11–12

    Article  PubMed  CAS  Google Scholar 

  • Gisselmann G, Plonka J, Pusch H, Hatt H (2004) Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Brit J Pharmacol 142:409–413

    Article  CAS  Google Scholar 

  • Grenningloh G, Schmieden V, Schofield PR, Seeburg PH, Siddique T, Mohandas TK, Becker CM, Betz H (1990a) Alpha subunit variants of the human glycine receptor: primary structures, functional expression, and chromosomal localization of the corresponding genes. EMBO J 9:771–776

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Pribilla I, Prior P, Multhaub G, Beyreuther K, Taleb O, Betz H (1990b) Cloning and expression of the 58 kD β subunit of the inhibitory glycine receptor. Neuron 4:963–970

    Article  PubMed  CAS  Google Scholar 

  • Grudzinska J, Schemm R, Haeger S, Nicke A, Schmalzing G, Betz H, Laube B (2005) The β subunit determines the ligand-binding properties of synaptic glycine receptors. Neuron 45:727–739

    Article  PubMed  CAS  Google Scholar 

  • Gruol DL, Weinreich D (1979) Two pharmacologically distinct histamine receptors mediating membrane hyperpolarization on identified neurons of Aplysia californica. Brain Res 162:281–301

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, p 814

    Google Scholar 

  • Horoszok L, Raymond V, Sattelle DB, Wolstenholme AJ (2001) GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, l-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Br J Pharmacol 132:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Hutton ML, Harvey RJ, Earley FG, Barnard EA, Darlison MG (1993) A novel invertebrate GABA-A receptor-like polypeptide. Sequence and pattern of gene expression. FEBS Lett 326:112–116

    Article  PubMed  CAS  Google Scholar 

  • Jensen ML, Pedersen LN, Timmermann DB, Schusboe A, Ahring PK (2005) Mutational studies using a cation-conducting GABA-A receptor reveal the selectivity determinants of the cys-loop family of ligand-gated ion channels. J Neurochem 92:962–972

    Article  PubMed  CAS  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:103–114

    Article  Google Scholar 

  • Kehoe JS (1976) Electrogenic effects of neutral amino acids on neurons of Aplysia californica. Cold Spring Harb Symp of Quant Biol 40:145–155

    CAS  Google Scholar 

  • Kehoe J, Vulfius C (2000) Independence of and interactions between GABA-, glutamate-, and acetylcholine-activated Cl conductances in Aplysia neurons. J Neurosci 20:8585–8596

    PubMed  CAS  Google Scholar 

  • Keramidas A, Moorhouse AJ, French CR, Schofield PR, Barry PH (2000) M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys J 78:247–259

    Article  Google Scholar 

  • Kracun S, Harkness PC, Gibb AJ, Millar NS (2008) Influence of the M3–M4 intracellular domain upon nicotinic acetylcholine receptor assembly, targeting and function. Br J Pharmacol 153:1474–1484

    Article  PubMed  CAS  Google Scholar 

  • Le Novère N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40:155–172

    Article  PubMed  Google Scholar 

  • Lester HA, Dibaas MI, Dahan DS, Leite JF, Daugherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27:329–336

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Rubio ME, Trussell LO (2008) Glycinergic transmission shaped by the corelease of GABA in a mammalian auditory synapse. Neuron 57:524–535

    Article  PubMed  CAS  Google Scholar 

  • Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1061–1095

    Google Scholar 

  • McCaman RE, Weinreich D (1985) Histaminergic synaptic transmission in the cerebral ganglion of Aplysia. J Neurophysiol 53:1016–1037

    PubMed  CAS  Google Scholar 

  • Medina I, Krapivinsky G, Arnold S, Kovoor P, Krapivinsky L, Clapham DE (2000) A switch mechanism for G beta gamma activation of I(KACh). J Biol Chem 275:29709–29716

    Article  PubMed  CAS  Google Scholar 

  • Menard C, Horvitz HR, Cannon S (2005) Chimeric mutations in the M2 segment of the 5-hydroxytryptamine-gated chloride channels MOD-1 define a minimal determinant of anion/cation permeability. J Biol Chem 280:27502–27507

    Article  PubMed  CAS  Google Scholar 

  • Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A, Knudsen B, Sahni A, Yu F, Li L, Jezzini S, Lovell P, Iannucculli W, Chen M, Nguyen T, Sheng H, Shaw R, Kalachikov S, Panchin YV, Farmerie W, Russo JJ, Ju J, Kandel ER (2006) Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell 127:1453–1467

    Article  PubMed  CAS  Google Scholar 

  • Ortells MO, Lunt GG (1995) Evolutionary history of the ligand-gated ion channel superfamily of receptors. Trends Neurosci 18:121–127

    Article  PubMed  CAS  Google Scholar 

  • Oyama Y, Ikemoto Y, Kits KS, Akaike N (1990) GABA affects the glutamate receptor-chloride channel complex in mechanically isolated and internally perfused Aplysia neurons. Eur J Pharmacol 185:43–52

    Article  PubMed  CAS  Google Scholar 

  • Pless SA, Millen KS, Hanek AP, Lynch JW, Lester HA, Lummis SCR, Dougherty DA (2008) A cation–π interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue. J Neurosci 28:10937–10942

    Article  PubMed  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  PubMed  CAS  Google Scholar 

  • Rajendra S, Vandenberg RJ, Pierce KD, Cunningham AM, French PW, Barry PH, Schofield PR (1995) The unique extracellular disulfide loop of the glycine receptor is a principal ligand-binding element. EMBO J 14:2987–2998

    PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) Tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Schmieden V, Betz H (1995) Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds. Mol Pharmacol 48:919–927

    PubMed  CAS  Google Scholar 

  • Schmieden V, Kuhse J, Betz H (1993) Mutation of glycine receptor subunit creates β-alanine receptor responsive to GABA. Science 262:256–258

    Article  PubMed  CAS  Google Scholar 

  • Schnizler K, Saeger B, Pfeffer C, Gerbaulett A, Ebbinghaus-Kintscher U, Methfessel C, Franken E-M, Raming K, Wetzel CH, Saras A, Pusch H, Hatt H, Gisselmann G (2005) A novel chloride channel in Drosophila melanogaster is inhibited by protons. J Biol Chem 16:16254–16262

    Article  Google Scholar 

  • Shan Q, Haddrill JI, Lynch JW (2001) Ivermectin, an unconventional agonist of the glycine receptor chloride channel. J Biol Chem 276:12556–12564

    Article  PubMed  CAS  Google Scholar 

  • Sunesen M, de Carvalho LP, Dufresne V, Grailhe R, Savatier-Duclert N, Gibor G, Peretz A, Attali B, Changeux J-P, Pass Y (2006) Mechanism of Cl-selection by a glutamate-gated chloride (GluCl) receptor revealed through mutations in the selectivity filter. J Biol Chem 281:14875–14881

    Article  PubMed  CAS  Google Scholar 

  • Tasneem A, Iyer LM, Jakobsson E, Aravind L (2004) Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 6:R4

    Article  PubMed  Google Scholar 

  • Vafa B, Lewis TM, Cunningham AM, Jacques P, Lynch JW, Schofield PR (1999) Identification of a new ligand-binding domain in the alpha1 subunit of the inhibitory glycine receptor. J Neurochem 73:2158–2166

    PubMed  CAS  Google Scholar 

  • van Nierop P, Keramidas A, Bertrand S, van Minnen J, Gouwenberg Y, Bertrand D, Smit AB (2005) Identification of molluscan nicotinic acetylcholine receptor (nAChR) subunits involved in formation of cation- and anion-selective nAChRs. J Neurosci 25:10617–10626

    Article  PubMed  Google Scholar 

  • Vassilatis DK, Arena JP, Plasterk RH, Wilkinson HA, Schaeffer JM, Cully DF, Van der Ploeg LH (1997) Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. J Biol Chem 272:33167–33174

    Article  PubMed  CAS  Google Scholar 

  • Wotring VE, Weiss DS (2008) Charge scan reveals an extended region at the intracellular end of the GABA receptor pore that can influence ion selectivity. J Gen Physiol 131:887–897

    Google Scholar 

  • Xue H (1998) Identification of major phylogenetic branches of inhibitory ligand-gated channel receptors. J Mol Evol 47:323–333

    Article  PubMed  CAS  Google Scholar 

  • Yates DM, Portillo V, Wolstenholme AJ (2003) The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol 33:1183–1193

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludrmerer SW, Schmatz DM, Cully DF (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J Biol Chem 277:2000–2006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

JacSue Kehoe would like to thank Cristina Alberini for her invaluable instruction at the beginning of the cloning of the two subunits; Philippe Djian, Eric Krejci, and Bruno della Gaspera for generously making their equipment available to her; Russell English for his help with preparation of the figures; Jean Deutsch and David Enard for their help and patience while introducing her to some of the basics of phylogenetic analysis, and Robert Zucker of Cell and Molecular Biology at U.C. Berkeley for welcoming her as a Visiting Scholar. A last but not least word of thanks to the DOE Joint Genome Institute for making their work in progress available to the scientific community. This work was supported in part by the NEUROCYPRES grant from the European Commission Seventh Framework Programme (for S.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JacSue Kehoe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 559 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehoe, J., Buldakova, S., Acher, F. et al. Aplysia cys-loop Glutamate-Gated Chloride Channels Reveal Convergent Evolution of Ligand Specificity. J Mol Evol 69, 125–141 (2009). https://doi.org/10.1007/s00239-009-9256-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9256-z

Keywords

Navigation