Skip to main content
Log in

Comparative Genomics of Drosophila mtDNA: Novel Features of Conservation and Change Across Functional Domains and Lineages

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

To gain insight on mitochondrial DNA (mtDNA) evolution, we assembled and analyzed the mitochondrial genomes of Drosophila erecta, D. ananassae, D. persimilis, D. willistoni, D. mojavensis, D. virilis and D. grimshawi together with the sequenced mtDNAs of the melanogaster subgroup. Genomic comparisons across the well-defined Drosophila phylogeny impart power for detecting conserved mtDNA regions that maintain metabolic function and regions that evolve uniquely on lineages. Evolutionary rate varies across intergenic regions of the mtDNA. Rapidly evolving intergenic regions harbor the majority of mitochondrial indel divergence. In contrast, patterns of nearly perfect conservation within intergenic regions reveal a refined set of nucleotides underlying the binding of transcription termination factors. Sequencing of 5′ cDNA ends indicates that cytochrome C oxidase I (CoI) has a novel (T/C)CG start codon and that perfectly conserved regions upstream of two NADH dehydrogenase (ND) genes are transcribed and likely extend these protein sequences. Substitutions at synonymous sites in the Drosophila mitochondrial proteomes reflect a mutation process that is biased toward A and T nucleotides and differs between mtDNA strands. Differences in codon usage bias across genes reveal that weak selection at silent sites may offset the mutation bias. The mutation-selection balance at synonymous sites has also diverged between the Drosophila and Sophophora lineages. Rates of evolution are highly heterogeneous across the mitochondrial proteome, with ND accumulating many more amino acid substitutions than CO. These oxidative phosphorylation complex-specific rates of evolution vary across lineages and may reflect physiological and ecological change across the Drosophila phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akashi H (1997) Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene 205:269–278

    Article  CAS  PubMed  Google Scholar 

  • Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 11:660–666

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D, Thornton K, Clark A, Andolfatto P (2006) Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 60:292–302

    CAS  PubMed  Google Scholar 

  • Ballard JW (2000) Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. J Mol Evol 51:48–63

    Article  CAS  PubMed  Google Scholar 

  • Ballard JW, Kreitman M (1994) Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard JW, Melvins RG, Katewa SD, Maas K (2007) Mitochondrial DNA variation is associated with measurable differences in life-history traits and mitochondrial metabolism in Drosophila simulans. Evolution 61:1735–1747

    Article  CAS  PubMed  Google Scholar 

  • Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  CAS  PubMed  Google Scholar 

  • Beard CB, Hamm DM, Collins FH (1993) The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2:103–124

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom CT, Pritchard J (1998) Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes. Genetics 149:2135–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthier F, Renaud M, Alziari S, Durand R (1986) RNA mapping on Drosophila mitochondrial DNA: precursors and template strands. Nucleic Acids Res 14:4519–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birky CW, Walsh JB (1988) Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci USA 85:6414–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blier PU, Breton S, Desrosiers V, Lemieux H (2006) Functional conservatism in mitochondrial evolution: insight from hybridization of arctic and brook charrs. J Exp Zoolog B Mol Dev Evol 306:425–432

    Article  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL, Brown WM (1994) Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata. Genetics 138:423–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton S, Burger G, Stewart DT, Blier PU (2006) Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 172:1107–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Article  CAS  PubMed  Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Article  CAS  PubMed  Google Scholar 

  • Crooks G, Hon G, Chandonia J, Brenner S (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bruijn MH (1983) Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature 304:234–241

    Article  PubMed  Google Scholar 

  • Doiron S, Bernatchez L, Blier PU (2002) A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Mol Biol Evol 19:1902–1909

    Article  CAS  PubMed  Google Scholar 

  • Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  Google Scholar 

  • Duret L (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16:287–289

    Article  CAS  PubMed  Google Scholar 

  • Edmands S, Burton RS (1999) Cytochrome C oxidase activity in interpopulation hybrids of a marine copepod: a test for nuclear-nuclear or nuclear-cytoplasmic coadaptation. Evolution 53:1972–1978

    CAS  PubMed  Google Scholar 

  • Ellison CK, Burton RS (2008a) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62:631–638

    Article  PubMed  Google Scholar 

  • Ellison CK, Burton RS (2008b) Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids. Proc Natl Acad Sci USA 105:15831–15836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich M, Muqim N (2003) Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. Mol Phylogenet Evol 26:502–512

    Article  CAS  PubMed  Google Scholar 

  • Gabriel W, Lynch M, Burger R (1993) Muller’s ratchet and mutational meltdowns. Evolution 47:1744–1757

    Article  CAS  PubMed  Google Scholar 

  • Garesse R (1988) Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JH (2000) Genetic drift in an infinite population. The pseudohitchhiking model. Genetics 155:909–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 6:e204

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbeck JT, Novembre J (2003) Codon usage patterns in cytochrome oxidase I across multiple insect orders. J Mol Evol 56:691–701

    Article  CAS  PubMed  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Turelli M (1997) Cytoplasmic incompatibility in insects. In: O’Neill S, Hoffmann A, Werren J (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, New York, pp 42–80

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hutter CM, Rand DM (1995) Competition between mitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis. Genetics 140:537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  • Innan H, Stephan W (2001) Selection intensity against deleterious mutations in RNA secondary structures and rate of compensatory nucleotide substitutions. Genetics 159:389–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James AC, Ballard JW (2003) Mitochondrial genotype affects fitness in Drosophila simulans. Genetics 164:187–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern AD, Kondrashov FA (2004) Mechanisms and convergence of compensatory evolution in mammalian mitochondrial tRNAs. Nat Genet 36:1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Ko WY, David RM, Akashi H (2003) Molecular phylogeny of the Drosophila melanogaster species subgroup. J Mol Evol 57:562–573

    Article  CAS  PubMed  Google Scholar 

  • Kopp A, True JR (2002) Phylogeny of the Oriental Drosophila melanogaster species group: a multilocus reconstruction. Syst Biol 51:786–805

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lewis DL, Farr CL, Farquhar AL, Kaguni LS (1994) Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Mol Biol Evol 11:523–538

    CAS  PubMed  Google Scholar 

  • Lewis RL, Beckenbach AT, Mooers AØ (2005) The phylogeny of the subgroups within the melanogaster species group: likelihood tests on COI and COII sequences and a Bayesian estimate of phylogeny. Mol Phylogenet Evol 37:15–24

    Article  CAS  PubMed  Google Scholar 

  • Li WH (1987) Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J Mol Evol 24:337–345

    Article  CAS  PubMed  Google Scholar 

  • Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M (1996) Mutation accumulation in transfer RNAs: molecular evidence for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol 13:209–220

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730

    Article  CAS  PubMed  Google Scholar 

  • Machado CA, Hey J (2003) The causes of phylogenetic conflict in a classic Drosophila species group. Proc Biol Sci 270:1193–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution Version 4.0. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Martin AP (1995) Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol Biol Evol 12:1124–1131

    CAS  PubMed  Google Scholar 

  • Meiklejohn CD, Montooth KL, Rand DM (2007) Positive and negative selection on the mitochondrial genome. Trends Genet 23:259–263

    Article  CAS  PubMed  Google Scholar 

  • Moriyama EN, Powell JR (1997) Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes. J Mol Evol 45:378–391

    Article  CAS  PubMed  Google Scholar 

  • Muller H (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  • Musto H, Romero H, Zavala A, Jabbari K, Bernardi G (1999) Synonymous codon choices in the extremely GC-poor genome of Plasmodium falciparum: compositional constraints and translational selection. J Mol Evol 49:27–35

    Article  CAS  PubMed  Google Scholar 

  • Nachman MW (1998) Deleterious mutations in animal mitochondrial DNA. Genetica 102–103:61–69

    Article  PubMed  Google Scholar 

  • Neiman M, Taylor DR (2009) The causes of mutation accumulation in mitochondrial genomes. Proc Biol Sci 276:1201–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nigro L, Solignac M, Sharp PM (1991) Mitochondrial DNA sequence divergence in the Melanogaster and oriental species subgroups of Drosophila. J Mol Evol 33:156–162

    Article  CAS  PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  • Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    CAS  PubMed  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    CAS  PubMed  Google Scholar 

  • Parsch J, Meiklejohn CD, Hauschteck-Jungen E, Hunziker P, Hartl DL (2001) Molecular evolution of the ocnus and janus genes in the Drosophila melanogaster species subgroup. Mol Biol Evol 18:801–811

    Article  CAS  PubMed  Google Scholar 

  • Pesole G, Gissi C, De Chirico A, Saccone C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 48:427–434

    Article  CAS  PubMed  Google Scholar 

  • Pollard DA, Iyer VN, Moses AM, Eisen MB (2006) Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet 2:e173

    Article  PubMed  PubMed Central  Google Scholar 

  • Popadin K, Polishchuk LV, Mamirova L, Knorre D, Gunbin K (2007) Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. Proc Natl Acad Sci USA 104:13390–13395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell JR (1983) Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence from Drosophila. Proc Natl Acad Sci USA 80:492–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748

    Article  CAS  PubMed  Google Scholar 

  • Rand DM, Kann LM (1998) Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica 102–103:393–407

    Article  PubMed  Google Scholar 

  • Rand DM, Clark AG, Kann LM (2001) Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. Genetics 159:173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed LK, Nyboer M, Markow TA (2007) Evolutionary relationships of Drosophila mojavensis geographic host races and their sister species Drosophila arizonae. Mol Ecol 16:1007–1022

    Article  CAS  PubMed  Google Scholar 

  • Remsen J, O’Grady PO (2002) Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support. Mol Phylogenet Evol 24:249–264

    Article  PubMed  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    Article  CAS  PubMed  Google Scholar 

  • Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ, Chen R, Meisel RP et al (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Roberti M, Polosa PL, Bruni F, Musicco C, Gadaleta MN, Cantatore P (2003) DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Res 31:1597–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  CAS  PubMed  Google Scholar 

  • Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209

    Article  CAS  PubMed  Google Scholar 

  • Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A (2000) Evolution of the mitochondrial genetic system: an overview. Gene 261:153–159

    Article  CAS  PubMed  Google Scholar 

  • Sackton TB, Haney RA, Rand DM (2003) Cytonuclear coadaptation in Drosophila: disruption of cytochrome c oxidase activity in backcross genotypes. Evolution 57:2315–2325

    CAS  PubMed  Google Scholar 

  • Schneider T, Stephens R (1990) Sequence logos: A new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker DD, Dyer KA, Ahrens M, McAbee K, Jaenike J (2004) Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168:2049–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tavare S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde JR, Marco R, Garesse R (1994) A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria. Proc Natl Acad Sci USA 91:5368–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong A, Jensen JD, Pool JE, Aquadro CF (2007) Phylogenetic incongruence in the Drosophila melanogaster species group. Mol Phylogenet Evol 43:1138–1150

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345:13–20

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi MM, Miya MU, Nishida M (2004) Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Mol Biol 13:435–442

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (1998) Synonymous and non-synonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge constructive discussion with the fly genomics community at large, as well as specific input from Brian Bettencourt, Rob Haney, Rob Kulathinal and Colin Meiklejohn and helpful comments from anonymous reviewers. The shotgun sequence data reported in this manuscript were generated by the Drosophila 12 Genomes Consortium. This work was supported by National Institutes of Health grants GM067862 to DMR and GM076812 to KLM and a Summer Research Fellowship to DMR in the Bay Paul Center for Comparative Molecular Biology and Evolution at the Marine Biological Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristi L. Montooth.

Additional information

Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. EU189427-189434 and TPA: BK006335-006341.

Electronic supplementary material

(TXT 194 kb)

(XLS 27 kb)

(XLS 100 kb)

(XLS 20 kb)

(PDF 100 kb)

This file is unfortunately not in the Publisher's archive anymore: (FAS 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montooth, K.L., Abt, D.N., Hofmann, J.W. et al. Comparative Genomics of Drosophila mtDNA: Novel Features of Conservation and Change Across Functional Domains and Lineages. J Mol Evol 69, 94–114 (2009). https://doi.org/10.1007/s00239-009-9255-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9255-0

Keywords

Navigation