Skip to main content
Log in

Evolution of Phage-Type RNA Polymerases in Higher Plants: Characterization of the Single Phage-Type RNA Polymerase Gene from Selaginella moellendorffii

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Selaginella moellendorfii (spikemoss) sequence trace data encoding a polypeptide highly similar to angiosperm and moss phage-type organelle RNA polymerases (RpoTs) were used to isolate a BAC clone containing the full-length gene SmRpoT as well as the corresponding cDNA. The SmRpoT mRNA comprises 3452 nt with an open reading frame of 3006 nt, encoding a putative protein of 1002 amino acids with a molecular mass of 113 kDa. The SmRpoT gene comprises 19 exons and 18 introns, conserved in their position with those of the angiosperm and Physcomitrella RpoT genes. In phylogenetic analyses, the Selaginella RpoT polymerase is in a sister position to all other phage-type polymerases of angiosperms. However, according to its conserved exon–intron structure, the Selaginella RpoT gene is representative of the molecular evolutionary lineage giving rise to the RpoT gene family of flowering plants. The N-terminal transit peptide of SmRpoT is shown to confer targeting of green fluorescent protein exclusively to mitochondria after transient expression in Arabidopsis and Selaginella protoplasts. Angiosperms and the moss P. patens possess small gene families encoding RpoTs, which include mitochondrial- and chloroplast-targeted RNA polymerases. In striking contrast, the Selaginella RpoT gene is shown to be single-copy, although Selaginella, as a lycophyte, has a phylogenetic position between Physcomitrella and angiosperms. Thus, there is no evidence that Selaginella may contain a nuclear-encoded phage-type chloroplast RNA polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akashi K, Grandjean O, Small I (1998) Potential dual targeting of an Arabidopsis archaebacterial-like histidyl-tRNA synthetase to mitochondria and chloroplasts. FEBS Lett 431:39–44

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Sheen J, Bligny M, Niwa Y, Lerbs-Mache S, Stern DB (1999) Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell 11:911–926

    Article  PubMed  CAS  Google Scholar 

  • Emanuel C, Weihe A, Graner A, Hess WR, Börner T (2004) Chloroplast development affects expression of phage-type RNA polymerases in barley leaves. Plant J 38:460–472

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Stampacchia O, Redding K, Rochaix JD (1996) Selectable marker recycling in the chloroplast. Mol Gen Genet 251:373–380

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF (1998) Transcription in chloroplasts and mitochondria: a tale of two polymerases. Trends Microbiol 6:1–3

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2:6

    Article  Google Scholar 

  • Greenberg BM, Narita JO, DeLuca-Flaherty C, Gruissem W, Rushlow KA, Hallick RB (1984) Evidence for two RNA polymerases activities in Euglena gracilis chloroplasts. J Biol Chem 259:14880–14887

    PubMed  CAS  Google Scholar 

  • Hedtke B, Börner T, Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277:809–811

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Meixner M, Gillandt S, Richter E, Börner T, Weihe A (1999) Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. Plant J 17:557–561

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Börner T, Weihe A (2000) One RNA polymerase serving two genomes. EMBO Rep 1:435–440

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Legen J, Weihe A, Herrmann RG, Börner T (2002) Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant J 30:625–637

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Börner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Ikeda TM, Gray MW (1999) Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat. Plant Mol Biol 40:567–578

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Sato N (2005) Unique translation initiation at the second AUG codon determines mitochondrial localization of the phage-type RNA polymerases in the moss Phscomitrella patens. Plant Physiol 138:369–382

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Hashimoto K, Sato N (2002) Identification and characterization of two phage-type RNA polymerase cDNAs in the moss Physcomitrella patens: implication of recent evolution of nuclear-encoded RNA polymerase of plastids in plants. Plant Cell Physiol 43:245–255

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Dokiya Y, Sugita M (2001a) Dual targeting of phage-type RNA polymerase to both mitochondria and plastids is due to alternative translation initiation in single transcripts. Biochem Biophys Res Commun 289:1106–1113

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Dokiya Y, Sugiura M, Niwa Y, Sugita M (2001b) Genomic organization and organ-specific expression of a nuclear gene encoding phage-type RNA polymerase in Nicotiana sylvestris. Gene 279:33–40

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Dokiya Y, Kumazawa Y, Sugita M (2002) Non-AUG translation initiation of mRNA encoding plastid-targeted phage-type RNA polymerase in Nicotiana sylvestris. Biochem Biophys Res Commun 299:57–61

    Article  PubMed  CAS  Google Scholar 

  • Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K (2004) Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol 45:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:483–487

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Li J, Maga JA, Cermakian N, Cedergren R, Feagin JE (2001) Identification and characterization of a Plasmodium falciparum RNA polymerase gene with similarity to mitochondrial RNA polymerases. Mol Biochem Parasitol 113:261–269

    Article  PubMed  CAS  Google Scholar 

  • Liere K, Börner T (2007) Transcription and transcriptional regulation in plastids. In: Bock R (ed) Topics in current genetics. Volume 19. Cell and molecular biology of plastids. Springer-Verlag, Berlin, Germany, pp 121–174

  • Liere K, Kaden D, Maliga P, Börner T (2004) Overexpression of phage-type RNA polymerase RpoTp in tobacco demonstrates its role in chloroplast transcription by recognizing a distinct promoter type. Nucleic Acids Res 32:1159–1165

    Article  PubMed  CAS  Google Scholar 

  • Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA, Schmitz-Linneweber C, Börner T, Tillich M (2008) Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol 6:36

    Article  PubMed  Google Scholar 

  • McAllister WT, Raskin CA (1997) The phage RNA polymerases are related to DNA polymerases and reverse transcriptases. Mol Microbiol 10:1–6

    Article  Google Scholar 

  • Peeters NM, Chapron A, Giritch A, Grandjean O, Lancelin D, Lhomme T, Vivrel A, Small I (2000) Duplication and quadruplication of Arabidopsis thaliana cysteinyl- and asparaginyl-tRNA synthetase genes of organellar origin. J Mol Evol 50:413–423

    PubMed  CAS  Google Scholar 

  • Richter U, Kiessling J, Hedtke B, Decker E, Reski R, Börner T, Weihe A (2002) Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids. Gene 290:95–105

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Serino G, Maliga P (1998) RNA polymerase subunit encoded by the plastid rpo genes is not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117:1165–1170

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68

    Article  PubMed  CAS  Google Scholar 

  • Sousa R, Chung YJ, Rose JP, Wang BC (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature 364:593–599

    Article  PubMed  CAS  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Wang W, Tanurdzic M, Luo M, Sisneros N, Kim HR, Weng JK, Kudrna D, Mueller C, Arumuganathan K, Carlson J et al (2005) Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorfii: a new resource for plant comparative genomics. BMC Plant Biol 5:10

    Article  PubMed  Google Scholar 

  • Weihe A (2004) The transcription of plant organelle genomes. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Kluwer, Dordrecht, The Netherlands, pp 213–237

    Chapter  Google Scholar 

  • Weihe A, Hedtke B, Börner T (1997) Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerases from the higher plant Chenopodium album. Nucl Acids Res 25:2319–2325

    Article  PubMed  CAS  Google Scholar 

  • Weng JK, Tanurdzic M, Chapple C (2005) Functional analysis and comparative genomics of expressed sequence tags from the lycophyte Selaginella moellendorffii. BMC Genomics 6:85–97

    Article  PubMed  Google Scholar 

  • Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Young DA, Allen RL, Harvey AJ, Lonsdale DM (1998) Characterization of a gene encoding a single-subunit bacteriophage-type RNA polymerase from maize which is alternatively spliced. Mol Gen Genet 260:30–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of C. Stock is gratefully acknowledged. We thank M. Tillich for valuable advice on protoplast isolation and C. Kühn for help with laser scanning microscopy. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (WE 1595/6-2) to A. W. and T. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weihe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, C., Richter, U., Börner, T. et al. Evolution of Phage-Type RNA Polymerases in Higher Plants: Characterization of the Single Phage-Type RNA Polymerase Gene from Selaginella moellendorffii . J Mol Evol 68, 528–538 (2009). https://doi.org/10.1007/s00239-009-9229-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9229-2

Keywords

Navigation