Skip to main content
Log in

The PII Superfamily Revised: A Novel Group and Evolutionary Insights

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The PII proteins compose a superfamily of signal transducers with fundamental roles in the nitrogen metabolism of prokaryotic organisms. They act at different cellular targets, such as ammonia transporters, enzymes, and transcriptional factors. These proteins are small, highly conserved, and well distributed among prokaryotes. The current PII classification is based on sequence similarity and genetic linkage. Our work reviewed this classification through an extensive analysis of PII homologues deposited in GenBank. We also investigated evolutionary aspects of this ancient protein superfamily and revised its PROSITE signatures. A new group of PII proteins is described in this work. These PII homologues have a peculiar genetic context, as they are associated with metal transporters and do not contain the canonical PROSITE signatures of PII. Our analysis reveals that horizontal gene transfer could have played an important role in PII evolution. Thus, new insights into PII evolution, a new PII group, and more comprehensive PROSITE signatures are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arcondéguy T, Jack R, Merrick M (2001) P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105

    Article  PubMed  Google Scholar 

  • Arnesano F, Banci L, Benvenuti M, Bertini I, Calderone V, Mangani S, Viezzoli MS (2003) The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction. J Biol Chem 278(46):45999–46006

    Article  PubMed  CAS  Google Scholar 

  • Brown J (2003) Ancient horizontal gene transfer. Nat Rev Genet 4:121–132

    Article  PubMed  CAS  Google Scholar 

  • Brown N, Stoyanov J, Kidd S, Hobman J (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  PubMed  CAS  Google Scholar 

  • Conroy MJ, Durand A, Lupo D, Li XD, Bullough PA, Winkler FK, Merrick M (2007) The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci USA 104:1213–1218

    Article  PubMed  CAS  Google Scholar 

  • Dodsworth JA, Leigh JA (2007) NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein. Biochem Biophys Res Commun 364:378–382

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence intervals on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fong ST, Camakaris J, Lee BT (1995) Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12. Mol Microbiol 15(6):1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K (2008) PII signal transducers: novel functional and structural insights. Trends Microbiol 16:65–72

    PubMed  CAS  Google Scholar 

  • Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28:319–333

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, Pierson BK (2006) The family Chloroflexaceae. In: Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 815–842

    Google Scholar 

  • Hesketh A, Fink D, Gust B, Rexer HU, Scheel B, Chater K, Wohlleben W, Engels A (2002) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol Microbiol 46(2):319–330

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Eder W (2006) Aquificales. In: Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 925–938

    Chapter  Google Scholar 

  • Huergo L, Chubatsu L, Souza E, Pedrosa FO, Steffens M, Merrick M (2006) Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense. FEBS Lett 580:5232–5236

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Leigh JA, Dodsworth JA (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution, 2nd edn. WH Freeman, New York

    Google Scholar 

  • Navaratnam DS, Fernando FS, Priddle JD, Giles K, Clegg SM, Pappin DJ, Craig I, Smith AD (2000) Hydrophobic protein that copurifies with human brain acetylcholinesterase: amino acid sequence, genomic organization, and chromosomal localization. J Neurochem 74(5):2146–2153

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 4:14

    Google Scholar 

  • Nichols CE, Sainsbury S, Berrow NS, Alderton D, Saunders NJ, Stammers DK, Owens RJ (2006) Structure of the PII signal transduction protein of Neisseria meningitidis at 1.85 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:494–497

    Article  PubMed  Google Scholar 

  • Ninfa A, Atkinson M (2000) PII signal transduction proteins. Trends Microbiol 8:172–179

    Article  PubMed  CAS  Google Scholar 

  • Ninfa A, Jiang P (2005) PII signal transduction proteins: sensors of [alpha]-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8:168–173

    Article  PubMed  CAS  Google Scholar 

  • Osanai T, Tanaka K (2007) Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol 48:908–914

    Article  PubMed  CAS  Google Scholar 

  • Patriarca EJ, Tatè R, Iaccarino M (2002) Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 66:203–222

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Huang CH (2006) Rh proteins vs. Amt proteins: an organismal and phylogenetic perspective on CO2 and NH3 gas channels. Transfus Clin Biol 13:85–94

    Article  PubMed  CAS  Google Scholar 

  • Perrier AL, Cousin X, Boschetti N, Haas R, Chatel JM, Bon S, Roberts WL, Pickett SR, Massoulié J, Rosenberry TL, Krejci E (2000) Two distinct proteins are associated with tetrameric acetylcholinesterase on the cell surface. J Biol Chem 275(44):34260–34265

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Allen JF (2003) Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol 4:209

    Article  PubMed  Google Scholar 

  • Raymond J, Siefert J, Staples C, Blankenship R (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  PubMed  CAS  Google Scholar 

  • Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Saitou N (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sakai H, Wang H, Takemoto-Hori C, Kaminishi T, Yamaguchi H, Kamewari Y, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S (2005) Crystal structures of the signal transducing protein GlnK from Thermus thermophilus HB8. J Struct Biol 149:99–110

    Article  PubMed  CAS  Google Scholar 

  • Strösser J, Lüdke A, Schaffer S, Krämer R, Burkovski A (2004) Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 54(1):132–147

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software, version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Coutts G, Merrick M (2000) The glnKamtB operon: a conserved gene pair in prokaryotes. Trends Genet 16:11–14

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Franke CC, Nordlund S, Norén A (2005) Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1. FEMS Microbiol Lett 253:273–279

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Xu Y, Carr PD, Clancy P, Garcia-Dominguez M, Forchhammer K, Florencio F, Vasudevan SG, de Tandeau MN, Ollis DL (2003) The structures of the PII proteins from the cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Acta Crystallogr D Biol Crystallogr 59:2183–2190

    Article  PubMed  Google Scholar 

  • Xu Y, Cheah E, Carr PD, van Heeswijk WC, Westerhoff HV, Vasudevan SG, Ollis DL (1998) GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. J Mol Biol 282:149–165

    Article  PubMed  CAS  Google Scholar 

  • Yildiz O, Kalthoff C, Raunser S, Kuhlbrandt W (2007) Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake. EMBO J 26:589–599

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Brazilian National Research Council (CNPq) and the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS). F. H. Sant’Anna, D. B. Trentini, S. Weber, and R. Cecagno received scholarships from CAPES. We thank Marcos Oliveira de Carvalho for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Silveira Schrank.

Additional information

The authors Fernando Hayashi Sant’Anna and Débora Broch Trentini contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sant’Anna, F.H., Trentini, D.B., de Souto Weber, S. et al. The PII Superfamily Revised: A Novel Group and Evolutionary Insights. J Mol Evol 68, 322–336 (2009). https://doi.org/10.1007/s00239-009-9209-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9209-6

Keywords

Navigation