Skip to main content
Log in

Adaptive and Slightly Deleterious Evolution in a Conifer, Cryptomeria japonica

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In order to evaluate effects of the population structure and natural selection on organisms having long generation times, we surveyed DNA polymorphisms at five loci encoding 9-cis-epoxycarotenoid dioxygenase (NCED), ammonium transporter, calmodulin, aquaporin, and the second major allergen with polymethylgalacturonase enzyme activity in the pollen (Cryj2) in a conifer, Cryptomeria japonica. The average nucleotide diversity at silent sites across 12 loci including the previously analyzed seven loci was 0.0044. The population recombination rate (4Nr, where N and r are the effective population size and recombination rate per base per generation, respectively) was estimated as 0.00046 and a slow reduction in the population size was indicated, according to the maximum likelihood method implemented in LAMARC. At NCED, the McDonald-Kreitman (MK) test revealed an excess of replacement polymorphisms, suggesting contributions of slightly deleterious mutations. In contrast, the MK test revealed an excess of replacement divergence at Cryj2 and a maximum likelihood approach using the PAML package revealed that certain amino acid sites had a nonsynonymous/synonymous substitution rate ratio (ω) > 4.0, indicating adaptive evolution at this locus. The overall analysis of the 12 loci suggested that adaptive, neutral, and slightly deleterious evolution played important roles in the evolution of C. japonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguade M (2001) Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana. Mol Biol Evol 18:1–9

    PubMed  CAS  Google Scholar 

  • Baum J, Thomas AW, Conway DJ (2003) Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax. Genetics 163:1327–1336

    PubMed  CAS  Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan MD, Hartl DL (2002) The cost of inbreeding in Arabidopsis. Nature 416:531–534

    Article  PubMed  CAS  Google Scholar 

  • Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive protein from animals and plants. Reproduction 131:11–22

    Article  PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Fay JC, Wyckoff GJ, Wu CI (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415:1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutation. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Gadek PA, Alpers DL, Heslewood MM, Quinn CJ (2000) Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Am J Bot 87:1044–1057

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JH (1989) Lineage effects and the index of dispersion of molecular evolution. Mol Biol Evol 6:636–647

    PubMed  CAS  Google Scholar 

  • González-Martínez SC, Krutovsky KV, Neale DB (2006) Forest-tree population genomics and adaptive evolution. New Phytol 170:227–238

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, MA, pp 43–63

    Google Scholar 

  • Heuertz M, De Paoli E, Kallman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Hizume M, Kondo T, Shibata F, Ishizuka R (2001) Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66:307–311

    Google Scholar 

  • Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014

    PubMed  CAS  Google Scholar 

  • Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589

    PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953

    Article  PubMed  CAS  Google Scholar 

  • Kado T, Yoshimaru H, Tsumura Y, Tachida H (2003) DNA Variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164:1547–1559

    PubMed  CAS  Google Scholar 

  • Kado T, Ushio Y, Yoshimaru H, Tsumura Y, Tachida H (2006) Contrasting patterns of DNA variation in natural populations of closely related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes Genet Syst 81(2):103–113

    Article  PubMed  CAS  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (1998) Macimum likelihood estimation of population growth rates base on the coalescent. Genetics 149:429–434

    PubMed  CAS  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (2000) Maximum likelihood estimation of recombination rates from population data. Genetics 156:1393–1401

    PubMed  CAS  Google Scholar 

  • Kuhner MK, Yamato J, Beerli P, Smith LP, Rynes E, Walkup E, Li C, Sloan J, Colacurcio P, Felsenstein J (2004) LAMARC v 1.2.1. University of Washington. Available at: http://evolution.gs.washington.edu/lamarc.html

  • Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. Am J Bot 87:1480–1488

    Article  PubMed  CAS  Google Scholar 

  • Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2002) Molecular evolution of nuclear genes in Cupressaceae, a group of conifer trees. Mol Biol Evol 19:736–747

    PubMed  CAS  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171:2029–2041

    Article  PubMed  CAS  Google Scholar 

  • Kvist L, Martens J, Nazarenko AA, Orell M (2003) Paternal leakage of mitochondrial DNA in the great tit (Parus major). Mol Biol Evol 20:243–247

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Namba M, Kurose M, Torigoe K, Hino K, Taniguchi Y, Fukuda S, Usui M, Kutimoto M (1994) Molecular cloning of the second major allergen, Cry jII, from Japanese cedar pollen. FEBS Lett 353:124–128

    Article  PubMed  CAS  Google Scholar 

  • Neale DB, Savolinen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nikaido AM, Ujino T, Iwata H, Yoshimura K, Yoshimaru H, Suyama Y, Murai M, Nagasaka K, Tsumura Y (2000) AFLP and CAPS linkage maps of Cryptomeria japonica. Theor Appl Genet 100:825–831

    Article  CAS  Google Scholar 

  • Nordborg M, Tina TH, Ishino Y et al (24 coauthors) (2005) The pattern of polymorphism in Arabidoposis thaliana. PLoS Biol 3(7):e196

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Evol S 23:263–286

    Article  Google Scholar 

  • Ohta T (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol 40:56–63

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki T, Taniguchi Y, Kohno K, Fukuda S, Usui M, Kurimoto M (1995) Cry j 2, a major allergen of Japanese cedar pollen, shows polymethylgalacturonase activity. Allergy 50:483–488

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    PubMed  CAS  Google Scholar 

  • Rozas J, JSánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024

    Article  PubMed  CAS  Google Scholar 

  • Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671

    Article  PubMed  CAS  Google Scholar 

  • Tachida H (2000) Molecular evolution in a multisite nearly neutral mutation model. J Mol Evol 50:69–81

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Takahara H (1998) Sugi-rin no hensen. In: Yasuda Y, Miyoshi N (eds) Nippon rettou syokusei-si. Asakura Shoten, Tokyo, pp 207–223 (in Japanese)

    Google Scholar 

  • Takahashi T, Tani N, Taira H, Tsumura Y (2005) Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. J Plant Res 118:83–90

    Article  PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Tomaru N, Tsumura Y, Ohba K (1994) Genetic variation and population differentiation in natural populations of Cryptomeria japonica. Plant Species Biol 9:191–199

    Article  Google Scholar 

  • Tsukada M (1982) Cryptomeria japonica: glacial refugia and late-glacial and postglacial migration. Ecology 63:1091–1105

    Article  Google Scholar 

  • Tsumura Y, Tomaru N (1999) Genetic diversity of Cryptomeria japonica using co-dominant markers based on sequenced-tagged sites. Theor Appl Genet 98:396–404

    Article  CAS  Google Scholar 

  • Tsumura Y, Kado T, Takahashi T, Tani N, Ujino-Ihara T, Iwata H (2007) Genome scan to detect genetic structure and adaptive genes of natural populations of Cryptomeria japonica. Genetics 176:2393–2403

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556. Available at: http://abacus.gene.ucl.ac.uk/software/paml.html

  • Yu N, Jensen-Seaman MI, Chemnick L, Kidd JR, Deinard AS, Ryder O, Kidd KK, Li WH (2003) Low nucleotide diversity in chimpanzees and bonobos. Genetics 164:1511–1518

    PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Gaut BS (2005) Molecular population genetics and the search for adaptive evolution. Mol Biol Evol 22(3):506–519

    Article  PubMed  CAS  Google Scholar 

  • Zeng LW, Comeron JM, Chen B, Kreitman M (1998) The molecular clock revisited: the rate of synonymous vs. replacement change in Drosophila. Genetica 102(103):369–382

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hitoshi Araki and two anonymous referees for helpful comments on the manuscript. This work was partially supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 16370101, 19370099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Tachida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, A., Kado, T., Yoshimaru, H. et al. Adaptive and Slightly Deleterious Evolution in a Conifer, Cryptomeria japonica . J Mol Evol 67, 201–210 (2008). https://doi.org/10.1007/s00239-008-9140-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9140-2

Keywords

Navigation