Skip to main content
Log in

Ancient gene duplications and the root(s) of the tree of life

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary.

Tracing organismal histories on the timescale of the tree of life remains one of the challenging tasks in evolutionary biology. The hotly debated questions include the evolutionary relationship between the three domains of life (e.g., which of the three domains are sister domains, are the domains para-, poly-, or monophyletic) and the location of the root within the universal tree of life. For the latter, many different points of view have been considered but so far no consensus has been reached. The only widely accepted rationale to root the universal tree of life is to use anciently duplicated paralogous genes that are present in all three domains of life. To date only few anciently duplicated gene families useful for phylogenetic reconstruction have been identified. Here we present results from a systematic search for ancient gene duplications using twelve representative, completely sequenced, archaeal and bacterial genomes. Phylogenetic analyses of identified cases show that the majority of datasets support a root between Archaea and Bacteria; however, some datasets support alternative hypotheses, and all of them suffer from a lack of strong phylogenetic signal. The results are discussed with respect to the impact of horizontal gene transfer on the ability to reconstruct organismal evolution. The exchange of genetic information between divergent organisms gives rise to mosaic genomes, where different genes in a genome have different histories. Simulations show that even low rates of horizontal gene transfer dramatically complicate the reconstruction of organismal evolution, and that the different most recent common molecular ancestors likely existed at different times and in different lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • SF Altschul TL Madden AA Shaffer J Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389–3402 Occurrence Handle9254694 Occurrence Handle10.1093/nar/25.17.3389 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D

    Article  PubMed  CAS  Google Scholar 

  • L Aravind R Mazumder S Vasudevan EV Koonin (2002) ArticleTitleTrends in protein evolution inferred from sequence and structure analysis. Curr Opin Struct Biol 12 392–399 Occurrence Handle12127460 Occurrence Handle10.1016/S0959-440X(02)00334-2 Occurrence Handle1:CAS:528:DC%2BD38Xlt1Shs78%3D

    Article  PubMed  CAS  Google Scholar 

  • E Bapteste C Brochier (2004) ArticleTitleOn the conceptual difficulties in rooting the tree of life. Trends Microbiol 12 9–13 Occurrence Handle14700546 Occurrence Handle1:CAS:528:DC%2BD3sXhtVWjtLnP

    PubMed  CAS  Google Scholar 

  • H Brinkmann H Philippe (1999) ArticleTitleArchaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol 16 817–825 Occurrence Handle10368959 Occurrence Handle1:CAS:528:DyaK1MXjslGitbk%3D

    PubMed  CAS  Google Scholar 

  • JR Brown WF Doolittle (1995) ArticleTitleRoot of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92 2441–2445 Occurrence Handle7708661 Occurrence Handle1:CAS:528:DyaK2MXksl2ktbw%3D

    PubMed  CAS  Google Scholar 

  • – Robb FT, Weiss R, Doolittle WF (1997) Evidence for the early divergence of tryptophanyl- and tyrosyl-tRNA synthetases. J Mol Evol 45: 9–16

    Google Scholar 

  • G Caetano-Anolles (2002) ArticleTitleEvolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54 333–345 Occurrence Handle11847559 Occurrence Handle1:CAS:528:DC%2BD38XhsFKksrs%3D

    PubMed  CAS  Google Scholar 

  • P Cammarano S Gribaldo A Johann (2002) ArticleTitleUpdating carbamoylphosphate synthase (CPS) phylogenies: occurrence and phylogenetic identity of archaeal CPS genes. J Mol Evol 55 153–160 Occurrence Handle12107592 Occurrence Handle10.1007/s00239-002-2312-6 Occurrence Handle1:CAS:528:DC%2BD38XmtFejtLk%3D

    Article  PubMed  CAS  Google Scholar 

  • RL Cann M Stoneking AC Wilson (1987) ArticleTitleMitochondrial DNA and human evolution. Nature 325 31–36 Occurrence Handle3025745 Occurrence Handle10.1038/325031a0 Occurrence Handle1:CAS:528:DyaL2sXpslagtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • T Cavalier-Smith (2002) ArticleTitleThe neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52 7–76 Occurrence Handle11837318 Occurrence Handle1:CAS:528:DC%2BD38XhsVWmtL4%3D

    PubMed  CAS  Google Scholar 

  • RL Charlebois CW Sensen WF Doolittle JR Brown (1997) ArticleTitleEvolutionary analysis of the hisCGABdFDEHI gene cluster from the archaeon Sulfolobus solfataricus P2. J Bacteriol 179 4429–4432 Occurrence Handle9209067 Occurrence Handle1:CAS:528:DyaK2sXkt1Klsb8%3D

    PubMed  CAS  Google Scholar 

  • WF Doolittle (1998) ArticleTitleYou are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14 307–311 Occurrence Handle9724962 Occurrence Handle1:CAS:528:DyaK1cXlsValsbk%3D

    PubMed  CAS  Google Scholar 

  • – (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2129

  • A Drummond K Strimmer (2001) ArticleTitlePAL: an object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics 17 662–663 Occurrence Handle11448888 Occurrence Handle10.1093/bioinformatics/17.7.662 Occurrence Handle1:CAS:528:DC%2BD3MXmtleltLw%3D

    Article  PubMed  CAS  Google Scholar 

  • RC Edgar (2004) ArticleTitleMUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792–1797 Occurrence Handle15034147 Occurrence Handle1:CAS:528:DC%2BD2cXisF2ks7w%3D

    PubMed  CAS  Google Scholar 

  • TM Embley RP Hirt (1998) ArticleTitleEarly branching eukaryotes? Curr Opin Genet Dev 8 624–629 Occurrence Handle9914207 Occurrence Handle10.1016/S0959-437X(98)80029-4 Occurrence Handle1:CAS:528:DyaK1MXhs1yjtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • J Felsenstein (1978) ArticleTitleCases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27 401–410

    Google Scholar 

  • – (1993) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genetics, University of Washington, Seattle, Washington

  • DF Feng G Cho RF Doolittle (1997) ArticleTitleDetermining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci USA 94 13028–13033 Occurrence Handle9371794 Occurrence Handle1:CAS:528:DyaK2sXnvFamsL8%3D

    PubMed  CAS  Google Scholar 

  • WM Fitch K Upper (1987) ArticleTitleThe phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52 759–767 Occurrence Handle3454288 Occurrence Handle1:CAS:528:DyaL1cXlt1Cmtrc%3D

    PubMed  CAS  Google Scholar 

  • P Forterre H Philippe (1999) ArticleTitleWhere is the root of the universal tree of life? Bioessays 21 871–879 Occurrence Handle10497338 Occurrence Handle10.1002/(SICI)1521-1878(199910)21:10<871::AID-BIES10>3.0.CO;2-Q Occurrence Handle1:STN:280:DyaK1MvivVartA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • MY Galperin EV Koonin (1997) ArticleTitleA diverse superfamily of enzymes with ATP-dependent carboxylate- amine/thiol ligase activity. Protein Sci 6 2639–2643 Occurrence Handle9416615 Occurrence Handle1:CAS:528:DyaK2sXotVWht7w%3D Occurrence Handle10.1002/pro.5560061218

    Article  PubMed  CAS  Google Scholar 

  • JP Gogarten (1994) ArticleTitleWhich is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages. J Mol Evol 39 541–543 Occurrence Handle7807544 Occurrence Handle10.1007/BF00173425 Occurrence Handle1:CAS:528:DyaK2MXhvF2hurs%3D

    Article  PubMed  CAS  Google Scholar 

  • – Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manoloson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M (1989) Evolution of the vacuolar H+ -ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86: 6661–6665

    Google Scholar 

  • – Olendsenski L, Hilario E (1998) Gene duplications and horizontal transfer. In: Adams M, Weigel J (eds) Thermophiles: the key to molecular evolution and the origin of life? Taylor and Francis, London, pp 165–176

  • – Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19: 2226–2238

    Google Scholar 

  • S Gribaldo P Cammarano (1998) ArticleTitleThe root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47 508–516 Occurrence Handle9797401 Occurrence Handle1:CAS:528:DyaK1cXntFWhsL4%3D

    PubMed  CAS  Google Scholar 

  • – Philippe H (2002) Ancient phylogenetic relationships. Theor Popul Biol 61: 391–408

    Google Scholar 

  • S Guindon O Gascuel (2003) ArticleTitleA simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696–704 Occurrence Handle14530136 Occurrence Handle10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • RS Gupta (2001) ArticleTitleThe branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4 187–202 Occurrence Handle12051562 Occurrence Handle10.1007/s10123-001-0037-9 Occurrence Handle1:CAS:528:DC%2BD38XmtF2iu70%3D

    Article  PubMed  CAS  Google Scholar 

  • – Golding GB (1993) Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37: 573–582

    Google Scholar 

  • – Johari V (1998) Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-Thermus group and cyanobacteria. J Mol Evol 46: 716–720

    Google Scholar 

  • H Hartman A Fedorov (2002) ArticleTitleThe origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99 1420–1425 Occurrence Handle11805300 Occurrence Handle10.1073/pnas.032658599 Occurrence Handle1:CAS:528:DC%2BD38Xht1ClsL4%3D

    Article  PubMed  CAS  Google Scholar 

  • K Henze W Martin (2001) ArticleTitleHow do mitochondrial genes get into the nucleus? Trends Genet 17 383–387 Occurrence Handle11418217 Occurrence Handle10.1016/S0168-9525(01)02312-5 Occurrence Handle1:CAS:528:DC%2BD3MXksVyntL0%3D

    Article  PubMed  CAS  Google Scholar 

  • E Hilario JP Gogarten (1993) ArticleTitleHorizontal transfer of ATPase genes – the tree of life becomes a net of life. Biosystems 31 111–119 Occurrence Handle8155843 Occurrence Handle10.1016/0303-2647(93)90038-E Occurrence Handle1:CAS:528:DyaK2cXlvF2nu7o%3D

    Article  PubMed  CAS  Google Scholar 

  • JP Huelsenbeck F Ronquist (2001) ArticleTitleMRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 754–755 Occurrence Handle11524383 Occurrence Handle10.1093/bioinformatics/17.8.754 Occurrence Handle1:STN:280:DC%2BD3MvotV2isw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • Y Inagaki WF Doolittle SL Baldauf AJ Roger (2002) ArticleTitleLateral transfer of an EF-1α gene: origin and evolution of the large subunit of ATP sulfurylase in eubacteria. Curr Biol 12 772–776 Occurrence Handle12007424 Occurrence Handle10.1016/S0960-9822(02)00816-3 Occurrence Handle1:CAS:528:DC%2BD38XjsFygtbk%3D

    Article  PubMed  CAS  Google Scholar 

  • – Susko E, Fast NM, Roger AJ (2004) Covarion shifts cause a long branch attraction artifact that unites microsporidia and archaebacteria in EF-1α phylogenies. Mol Biol Evol 21: 1340–1349

    Google Scholar 

  • N Iwabe K Kuma M Hasegawa S Osawa T Miyata (1989) ArticleTitleEvolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86 9355–9359 Occurrence Handle2531898 Occurrence Handle1:CAS:528:DyaK3cXkvF2rtg%3D%3D

    PubMed  CAS  Google Scholar 

  • DT Jones WR Taylor JM Thornton (1992) ArticleTitleThe rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8 275–282 Occurrence Handle1633570 Occurrence Handle1:CAS:528:DyaK38Xlt1Okt7w%3D

    PubMed  CAS  Google Scholar 

  • JM Kollman RF Doolittle (2000) ArticleTitleDetermining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs. J Mol Evol 51 173–181 Occurrence Handle10948274 Occurrence Handle1:CAS:528:DC%2BD3cXmsVOrs7g%3D

    PubMed  CAS  Google Scholar 

  • B Labedan A Boyen M Baetens D Charlier P Chen R Cunin V Durbeco N Glansdorff G Herve C Legrain Z Liang C Purcarea M Roovers R Sanchez TL Toong M Vande Casteele F van Vliet Y Xu YF Zhang (1999) ArticleTitleThe evolutionary history of carbamoyltransferases: a complex set of paralogous genes was already present in the last universal common ancestor. J Mol Evol 49 461–473 Occurrence Handle10486004 Occurrence Handle1:CAS:528:DyaK1MXmslWhsbg%3D

    PubMed  CAS  Google Scholar 

  • JA Lake MC Rivera (2004) ArticleTitleDeriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol Biol Evol 21 681–690 Occurrence Handle14739244 Occurrence Handle1:CAS:528:DC%2BD2cXjt1egu7w%3D

    PubMed  CAS  Google Scholar 

  • FS Lawson RL Charlebois JA Dillon (1996) ArticleTitlePhylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol Biol Evol 13 970–977 Occurrence Handle8752005 Occurrence Handle1:CAS:528:DyaK28XltlSmsLY%3D

    PubMed  CAS  Google Scholar 

  • P Lopez P Forterre H Philippe (1999) ArticleTitleThe root of the tree of life in the light of the covarion model. J Mol Evol 49 496–508 Occurrence Handle10486007 Occurrence Handle1:CAS:528:DyaK1MXmslWhtro%3D

    PubMed  CAS  Google Scholar 

  • W Martin T Rujan E Richly A Hansen S Cornelsen T Lins D Leister B Stoebe M Hasegawa D Penny (2002) ArticleTitleEvolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99 12246–12251 Occurrence Handle12218172 Occurrence Handle1:CAS:528:DC%2BD38XntlCks70%3D

    PubMed  CAS  Google Scholar 

  • H Nyunoya CJ Lusty (1983) ArticleTitleThe carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci USA 80 4629–4633 Occurrence Handle6308632 Occurrence Handle1:CAS:528:DyaL3sXlsFaqurg%3D

    PubMed  CAS  Google Scholar 

  • H Philippe P Forterre (1999) ArticleTitleThe rooting of the universal tree of life is not reliable. J Mol Evol 49 509–523 Occurrence Handle10486008 Occurrence Handle1:CAS:528:DyaK1MXmslWhtrs%3D

    PubMed  CAS  Google Scholar 

  • – Budin K, Moreira D (1999) Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Mol Microbiol 31: 1007–1009

    Google Scholar 

  • JP Richardson (2002) ArticleTitleRho-dependent termination and ATPases in transcript termination. Biochim Biophys Acta 1577 251–260 Occurrence Handle12213656 Occurrence Handle1:CAS:528:DC%2BD38Xms1yhurs%3D

    PubMed  CAS  Google Scholar 

  • HA Schmidt K Strimmer M Vingron A von Haeseler (2002) ArticleTitleTREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18 502–504 Occurrence Handle11934758 Occurrence Handle10.1093/bioinformatics/18.3.502 Occurrence Handle1:CAS:528:DC%2BD38XivFKrsL0%3D

    Article  PubMed  CAS  Google Scholar 

  • RM Schwartz MO Dayhoff (1978) ArticleTitleOrigins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199 395–403 Occurrence Handle202030 Occurrence Handle1:CAS:528:DyaE1cXhtVSgurc%3D

    PubMed  CAS  Google Scholar 

  • K Strimmer A von Haeseler (1997) ArticleTitleLikelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 94 6815–6819 Occurrence Handle9192648 Occurrence Handle10.1073/pnas.94.13.6815 Occurrence Handle1:CAS:528:DyaK2sXktF2ruro%3D

    Article  PubMed  CAS  Google Scholar 

  • JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673–4680 Occurrence Handle7984417 Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D

    PubMed  CAS  Google Scholar 

  • R Thomson JK Pritchard P Shen PJ Oefner MW Feldman (2000) ArticleTitleRecent common ancestry of human Y chromosomes: evidence from DNA sequence data. Proc Natl Acad Sci USA 97 7360–7365 Occurrence Handle10861004 Occurrence Handle10.1073/pnas.97.13.7360 Occurrence Handle1:CAS:528:DC%2BD3cXksVKiu78%3D

    Article  PubMed  CAS  Google Scholar 

  • J Tovar G Leon-Avila LB Sanchez R Sutak J Tachezy M van der Giezen M Hernandez M Muller JM Lucocg (2003) ArticleTitleMitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426 172–176 Occurrence Handle14614504 Occurrence Handle10.1038/nature01945 Occurrence Handle1:CAS:528:DC%2BD3sXovVKmtLw%3D

    Article  PubMed  CAS  Google Scholar 

  • PA Underhill P Shen AA Lin L Jin G Passarino WH Yang E Kauffman B Bonne-Tamir J Bertranpetit P Francalacci M Ibrahim T Jenkins JR Kidd SQ Mehdi MT Seielstad RS Wells A Piazza RW Davis MW Feldman LL Cavalli-Sforza PJ Oefner (2000) ArticleTitleY chromosome sequence variation and the history of human populations. Nat Genet 26 358–361 Occurrence Handle11062480 Occurrence Handle10.1038/81685 Occurrence Handle1:CAS:528:DC%2BD3cXotVWhtr4%3D

    Article  PubMed  CAS  Google Scholar 

  • L Vigilant M Stoneking H Harpending K Hawkes AC Wilson (1991) ArticleTitleAfrican populations and the evolution of human mitochondrial DNA. Science 253 1503–1507 Occurrence Handle1840702 Occurrence Handle1:CAS:528:DyaK3MXmt1Ghu7g%3D

    PubMed  CAS  Google Scholar 

  • AP Vogler M Homma VM Irikura RM Macnab (1991) ArticleTitle Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J Bacteriol 173 3564–3572 Occurrence Handle1646201 Occurrence Handle1:CAS:528:DyaK38XjsFamsw%3D%3D

    PubMed  CAS  Google Scholar 

  • CR Woese (1987) ArticleTitleBacterial evolution. Microbiol Rev 51 221–271 Occurrence Handle2439888 Occurrence Handle1:CAS:528:DyaL2sXkslertLc%3D

    PubMed  CAS  Google Scholar 

  • – Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11: 245–251

  • – Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87: 4576–4579

    Google Scholar 

  • O Zhaxybayeva JP Gogarten (2003) ArticleTitleAn improved probability mapping approach to assess genome mosaicism. BMC Genomics 4 37 Occurrence Handle12974984 Occurrence Handle10.1186/1471-2164-4-37

    Article  PubMed  Google Scholar 

  • – – (2004) Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet 20: 182–187

  • – Hamel L, Raymond J, Gogarten J (2004a) Visualization of the phylogenetic content of five genomes using dekapentagonal maps. Genome Biol 5: R20

  • – Lapierre P, Gogarten JP (2004b) Genome mosaicism and organismal lineages. Trends Genet 20: 254–260

    Google Scholar 

  • Zillig W, Palm P, Klenk H-P (1992) A model of the early evolution of organisms: the arisal of the three domains of life from the common ancestor. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific, Singapore, pp 163–182

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peter Gogarten.

Additional information

Correspondence and reprints: Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, U.S.A.

Present address: Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhaxybayeva, O., Lapierre, P. & Gogarten, J. Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227, 53–64 (2005). https://doi.org/10.1007/s00709-005-0135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-005-0135-1

Navigation