Skip to main content

Characterization of the Different Levels of Variation in 45S rRNA Genes

  • Protocol
  • First Online:
Plant Gametogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2484))

Abstract

Although commonly regarded as nearly identical in sequence, 45S ribosomal RNA genes represent a massive source of genetic variation at different levels. Unfortunately, due to their repetitive nature and the difficulty to assemble their multiple copies in tandem, these important genomic elements remain largely unexplored in sequencing projects. Here, I describe how to exploit next generation sequencing data to estimate their copy number in an organism and detect true polymorphic sites within and among individuals. Furthermore, for species that carry multiple 45S ribosomal RNA gene clusters, I show how to make use of experimental populations to assign some of these variants to their cluster of origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss T, Langlois F, Gagnon-Kugler T et al (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49

    Article  CAS  Google Scholar 

  2. Layat E, Sáez-Vásquez J, Tourmente S (2012) Regulation of pol I-transcribed 45S rDNA and pol III-transcribed 5S rDNA in Arabidopsis. Plant Cell Physiol 53:267–276

    Article  CAS  Google Scholar 

  3. Ritossa FM, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of drosophila melanogaster. Proc Natl Acad Sci U S A 53:737–745

    Article  CAS  Google Scholar 

  4. Wallace H, Birnstiel ML (1966) Ribosomal cistrons and the nucleolar organizer. Biochim Biophys Acta 114:296–310

    Article  CAS  Google Scholar 

  5. Michael TP, Jupe F, Bemm F et al (2018) High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun 9:541

    Article  Google Scholar 

  6. Sims J, Sestini G, Elgert C et al (2021) Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nat Commun 12:387

    Article  CAS  Google Scholar 

  7. Guo Y, Li J, Li C-I et al (2012) The effect of strand bias in Illumina short-read sequencing data. BMC Genomics 13:666

    Article  CAS  Google Scholar 

  8. Guo Y, Cai Q, Samuels DC et al (2012) The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation. Mutat Res 744:154–160

    Article  CAS  Google Scholar 

  9. Rabanal FA, Mandáková T, Soto-Jiménez LM et al (2017) Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in Arabidopsis thaliana. Genome Biol 18:75

    Article  Google Scholar 

  10. Copenhaver GP, Pikaard CS (1996) RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J 9:259–272

    Article  CAS  Google Scholar 

  11. Copenhaver GP, Browne WE, Preuss D (1998) Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci 95:247–252

    Article  CAS  Google Scholar 

  12. Anaconda Software Distribution (2020) Anaconda Documentation. Anaconda Inc. https://docs.anaconda.com/

  13. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  14. Grüning B, Dale R, Sjödin A et al (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476

    Article  Google Scholar 

  15. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  16. Lamesch P, Berardini TZ, Li D et al (2012) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210

    Article  CAS  Google Scholar 

  17. Rabanal FA, Nizhynska V, Mandáková T et al (2017) Unstable Inheritance of 45S rRNA Genes in Arabidopsis thaliana. G3 (Bethesda) 7:1201–1209

    Article  CAS  Google Scholar 

  18. Alonso-Blanco C, El-Assal SE, Coupland G et al (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149:749–764

    Article  CAS  Google Scholar 

  19. Pontvianne F, Abou-Ellail M, Douet J et al (2010) Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet 6:e1001225

    Article  Google Scholar 

  20. Abou-Ellail M, Cooke R, Sáez-Vásquez J (2011) Variations in a team: major and minor variants of Arabidopsis thaliana rDNA genes. Nucleus 2:294–299

    Article  Google Scholar 

  21. Havlová K, Dvořáčková M, Peiro R et al (2016) Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol Biol 92:457–471

    Article  Google Scholar 

  22. Chandrasekhara C, Mohannath G, Blevins T et al (2016) Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes Dev 30:177–190

    Article  CAS  Google Scholar 

  23. Van Rossum G, Drake FL (2009) Python 3 reference manual. CreateSpace

    Google Scholar 

  24. SRA Toolkit Development Team. http://ncbi.github.io/sra-tools/

  25. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J 17:10–12

    Article  Google Scholar 

  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  27. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by a Human Frontiers Science Program (HFSP) Long-Term Fellowship (LT000819/2018-L) to FAR and by the Max Planck Society. I thank Sonja Kersten and Ilja Bezrukov for proofreading the manuscript and testing the code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando A. Rabanal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rabanal, F.A. (2022). Characterization of the Different Levels of Variation in 45S rRNA Genes. In: Lambing, C. (eds) Plant Gametogenesis. Methods in Molecular Biology, vol 2484. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2253-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2253-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2252-0

  • Online ISBN: 978-1-0716-2253-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics