Skip to main content
Log in

Evolutionary Pathways of the tirant LTR Retrotransposon in the Drosophila melanogaster Subgroup of Species

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Tirant, a LTR retrotransposon with copies scattered over the chromosome arms of Drosophila melanogaster, is in the process of being lost from the chromosome arms of most natural populations of the sister species D. simulans. In an attempt to clarify the dynamics and evolution of tirant, we have studied the regulatory and reverse transcriptase regions in copies of the nine closely related species of the D. melanogaster subgroup. We show that tirant is mainly vertically transmitted in these species, with the exception of a horizontal transfer event from an ancestor of D. melanogaster to D. teissieri. We propose that, in four of the species (D. melanogaster, D. simulans, D. sechellia, and D. mauritiana), the observed patterns of evolution of the regulatory region vary with genome constraints and with the history and biogeography of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Cizeron G (1999) Distribution of transposable elements in Drosophila species. Genetica 105:43–62

    Article  PubMed  Google Scholar 

  • Biémont C, Vieira C (2005) What transposable elements tell us about genome organization and evolution: The case of Drosophila? Cytogenet Genome Res 110:25–34

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Nardon C, Deceliere G, Lepetit D, Loevenbruck C, Vieira C (2003) Worldwide distribution of transposable element copy number in natural populations of Drosophila simulans. Evolution 57:159–167

    Article  PubMed  Google Scholar 

  • Boulesteix M, Weiss M, Biémont C (2006) Differences in genome size between closely related species: the Drosophila melanogaster species subgroup. Mol Biol Evol 23:162–167

    Article  PubMed  CAS  Google Scholar 

  • Cariou ML (1987) Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet Res 50:181–185

    Article  PubMed  CAS  Google Scholar 

  • Cizeron G, Lemeunier F, Loevenbruck C, Brehm A, Biémont C (1998) Distribution of the retrotransposable element 412 in Drosophila species. Mol Biol Evol 15:1589–1599

    PubMed  CAS  Google Scholar 

  • Deceliere G, Charles S, Biémont C (2005) The dynamics of transposable elements in structured populations. Genetics 169:467–474

    Article  PubMed  CAS  Google Scholar 

  • Di Franco C, Pisano C, Dimitri P, Gigliotti S, Junakovic N (1989) Genomic distribution of copia-like transposable elements in somatic tissue and during development of Drosophila melanogaster. Chromosoma 98:402–410

    Article  PubMed  CAS  Google Scholar 

  • Fablet M, McDonald JF, Biémont C, Vieira C (2006) Ongoing loss of the tirant transposable element in natural populations of Drosophila simulans. Gene 375:54–62

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_Win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  • Gonçalves I, Robinson M, Perrière G, Mouchiroud D (1999) JaDis: computing distances between nucleic acid sequences. Bioinformatics 15:424–425

    Article  PubMed  Google Scholar 

  • Heredia F, Loreto EL, Valente VL (2004) Complex evolution of gypsy in Drosophilid species. Mol Biol Evol 20:1831–1842

    Article  CAS  Google Scholar 

  • Jordan IK, McDonald JF (1998) Evolution of the copia retrotransposon in the Drosophila melanogaster species subgroup. Mol Biol Evol 15:1160–1171

    PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  PubMed  CAS  Google Scholar 

  • Kliman RM, Andolfatto P, Coyne JA, Depaulis F, Kreitman M, Berry AJ, McCarter J, Wakeley J, Hey J (2000) The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156:1913–1931

    PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  Google Scholar 

  • Lachaise D, Silvain JF (2004) How two Afrotropical endemics made two cosmopolitan human commensals: the Drosophila melanogasterD. simulans palaeogeographic riddle. Genetica 120:17–39

    Article  PubMed  Google Scholar 

  • Lerat E, Rizzon C, Biémont C (2003) Sequence divergence within transposable element families in the Drosophila melanogaster genome. Genome Res 13:1889–1896

    PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Marsano RM, Moschetti R, Caggese C, Lanave C, Barsanti P, Caizzi R (2000) The complete tirant transposable element in Drosophila melanogaster shows a structural relationship with retrovirus-like retrotransposons. Gene 247:87–95

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Hartl DL (1991) Evolution of the transposable element mariner in Drosophila species. Genetics 128:319–329

    PubMed  CAS  Google Scholar 

  • McClure MA, Johnson MS, Feng DF, Doolittle RF (1988) Sequence comparison of retroviral proteins: relative rates of change and general phylogeny. Proc Natl Acad Sci USA 85:2469–2473

    Article  PubMed  CAS  Google Scholar 

  • Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL (2005) Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet. Genome Res 110:342–352

    Article  PubMed  CAS  Google Scholar 

  • Moltó MD, Paricio N, López-Preciado MA, Semeshin VF, Martínez-Sebastián MJ (1996) Tirant: a new retrotransposon-like element in Drosophila melanogaster. J Mol Evol 42:369–375

    PubMed  Google Scholar 

  • Montchamp-Moreau C, Ronsseray S, Jacques M, Lehmann M, Anxolabéhère D (1993) Distribution and conservation of sequences homologous to the 1731 retrotransposon in Drosophila. Mol Biol Evol 10:791–803

    PubMed  CAS  Google Scholar 

  • Song SU, Gerasimova T, Kurkulos M, Boeke JD, Corces VG (1994) An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev 8:2046–2057

    PubMed  CAS  Google Scholar 

  • Strachan T, Coen E, Webb D, Dover G (1982) Modes and rates of change of complex DNA families of Drosophila. J Mol Biol 158:37–54

    Article  PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) Blast 2 sequences - a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Terzian C, Ferraz C, Demaille J, Bucheton A (2000) Evolution of the gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol Biol Evol 17:908–914

    PubMed  CAS  Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Uzun O, Gabriel A (2001) A Ty1 transcriptase active-site aspartate mutation blocks transposition but not polymerization. J Virol 75:6337–6347

    Article  PubMed  CAS  Google Scholar 

  • Vieira C, Biémont C (2004) Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans. Genetica 120:115–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Emmanuelle Lerat for useful comments, Gabriel Marais and Jean Thioulouse for their help with the purifying selection tests and the distance matrices, respectively, and Monika Ghosh for reviewing the English text. This work was funded by the Centre National de la Recherche Scientifique (UMR 5558 and GDR 2157 on Transposable Elements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Vieira.

Additional information

[Reviewing Editor: Dr. Gail Simmons]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fablet, M., Souames, S., Biémont, C. et al. Evolutionary Pathways of the tirant LTR Retrotransposon in the Drosophila melanogaster Subgroup of Species. J Mol Evol 64, 438–447 (2007). https://doi.org/10.1007/s00239-006-0108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0108-9

Keywords

Navigation