Skip to main content

LTR Retrotransposon Dynamics and Specificity in Setaria italica

  • Chapter
  • First Online:
Genetics and Genomics of Setaria

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 19))

Abstract

The distributions of different LTR retrotransposon families and structures were analyzed across the ~400 Mb assembly for the ~500 Mb genome of Setaria italica. The results indicated different genomic distributions for all five of the highly abundant LTR retrotransposon families that were investigated. Unequal recombination and illegitimate recombination appeared to be more active in LTR retrotransposon removal in the gene-rich regions towards the ends of all chromosomes. In striking contrast to this result, LTR retrotransposon ages did not differ dramatically across the assembled genome, suggesting that LTR retrotransposon removal rates are not dramatically influenced by genomic location. These two, largely incompatible, observations indicate that the dynamics of LTR retrotransposon activation, insertion, and removal all need a great deal of additional investigation, including highly detailed intraspecies analyses and interspecies comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol. 2011;29:521–7.

    Article  CAS  PubMed  Google Scholar 

  • Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 2009;5:e1000732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL. The many hues of plant heterochromatin. Genome Biol. 2000;1:Reviews107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev. 2005;15:621–7.

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL. Patterns in grass genome evolution. Curr Opin Plant Biol. 2007;10:176–81.

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505–30.

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30:555–61.

    Article  CAS  PubMed  Google Scholar 

  • Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A. Evidence for horizontal transmission of the P-transposable elements between Drosophila species. Genetics. 1990;124:339–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002;12:1075–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL. Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci U S A. 2005;102:19243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980;284:601–3.

    Article  CAS  PubMed  Google Scholar 

  • Estep MC, DeBarry JD, Bennetzen JL. The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity. 2013;110:194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte C. Opinion—transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9:397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008;18:359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandbastien M-A, Casacuberta JM. Plant transposable elements impact on genome structure and function. Berlin: Springer; 2012. SpringerLink (Online service). doi:10.1007/978-3-642-31842-9.

  • Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, et al. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci U S A. 2013;110:19478–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YK, Bennetzen JL. Structure and coding properties of Bs1, a maize retrovirus-like transposon. Proc Natl Acad Sci U S A. 1989;86:6235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidwell MG, Lisch D. Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A. 1997;94:7704–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchner J, Connolly CM, Sandmeyer SB. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science. 1995;267:1488–91.

    Article  CAS  PubMed  Google Scholar 

  • Kirik A, Salomon S, Puchta H. Species-specific double-strand break repair and genome evolution in plants. EMBO J. 2000;19:5562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Bennetzen JL. Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci U S A. 2006;103:383–8.

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P, Navratilova A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:427.

    Article  PubMed  PubMed Central  Google Scholar 

  • McClintock B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol. 1956;21:197–216.

    Article  CAS  PubMed  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature. 2009;461:1130–4.

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature. 1980;284:604–7.

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998;20:43–5.

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Bennetzen JL. Centromere retention and loss during the descent of maize from a tetraploid ancestor. Proc Natl Acad Sci U S A. 2012;109(51):21004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QH, Dooner HK. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A. 2006;103:17644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82.

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Buchmann JP, Keller B. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 2010;20:1229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Bennetzen JL. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci U S A. 2009;106:19922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou S, Voytas DF. Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci U S A. 1997;94:7412–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These analyses and the writing of this manuscript were supported by funding from the Giles Professorship to J. L. B. We thank Aye Htun for assistance with manuscript production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Bennetzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bennetzen, J.L., Park, M., Wang, H., Zhou, H. (2017). LTR Retrotransposon Dynamics and Specificity in Setaria italica . In: Doust, A., Diao, X. (eds) Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-45105-3_9

Download citation

Publish with us

Policies and ethics