Skip to main content
Log in

Adaptive Evolution of Multicolored Fluorescent Proteins in Reef-Building Corals

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Here we investigate the evolutionary scenarios that led to the appearance of fluorescent color diversity in reef-building corals. We show that the mutations that have been responsible for the generation of new cyan and red phenotypes from the ancestral green were fixed with the help of positive natural selection. This fact strongly suggests that the color diversity is a product of adaptive evolution. An unexpected finding was a set of residues arranged as an intermolecular binding interface, which was also identified as a target of positive selection but is nevertheless not related to color diversification. We hypothesize that multicolored fluorescent proteins evolved as part of a mechanism regulating the relationships between the coral and its algal endosymbionts (zooxanthellae). We envision that the effect of the proteins’ fluorescence on algal physiology may be achieved not only through photosynthesis modulation, but also through regulatory photosensors analogous to phytochromes and cryptochromes of higher plants. Such a regulation would require relatively subtle, but spectrally precise, modifications of the light field. Evolution of such a mechanism would explain both the adaptive diversification of colors and the coevolutionary chase at the putative algae-protein binding interface in coral fluorescent proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    Article  CAS  PubMed  Google Scholar 

  • Anisimova M, Bielawski JP, Yang ZH (2002) Accuracy and power of Bayes prediction of amino acid sites under positive selection. Mol Biol Evol 19:950–958

    CAS  PubMed  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741–741

    Article  CAS  PubMed  Google Scholar 

  • Bielawski JP, Dunn KA, Sabehi G, Beja O (2004) Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proc Natl Acad Sci USA 101:14824–14829

    Article  CAS  PubMed  Google Scholar 

  • Chang BSW, Ugalde JA, Matz MV (2005) Applications of ancestral protein reconstruction in understanding protein function: GFP-like proteins. Methods Enzymol 395:652–670

    PubMed  Google Scholar 

  • Douglas AE (1998) Host benefit and the evolution of specialization in symbiosis. Heredity 81:599–603

    Google Scholar 

  • Frank SA (1996) Host-symbiont conflict over the mixing of symbiotic lineages. Proc Roy Soc Lond Ser B Biol Sci 263:339–344

    CAS  Google Scholar 

  • Gurskaya NG, Savitsky AP, Yanushevich YG, Lukyanov SA, Lukyanov KA (2001) Color transitions in coral’s fluorescent proteins by site-directed mutagenesis. BMC Biochem 2:6

    Article  CAS  PubMed  Google Scholar 

  • Hopf M, Gohring W, Mann K, Timpl R (2001a) Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan. J Mol Biol 311:529–541

    Article  CAS  Google Scholar 

  • Hopf M, Gohring W, Ries A, Timpl R, Hohenester E (2001b) Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1. Nature Structural Biol 8:634–640

    CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc Roy Soc Lond Ser B Biol Sci 271:1757–1763

    CAS  Google Scholar 

  • Ivarsson Y, Mackey AJ, Edalat M, Pearson WR, Mannervik B (2003) Identification of residues in glutathione transferase capable of driving functional diversification in evolution—A novel approach to protein redesign. J Biol Chem 278:8733–8738

    Article  CAS  PubMed  Google Scholar 

  • Kawaguti S (1944) On the physiology of reef corals. VI. Study of the pigments. Palao Trop Biol Stn Stud 2:617–674

    Google Scholar 

  • Kelmanson I, Matz M (2003) Mol basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida). Mol Biol Evol 20:1125–1133

    CAS  PubMed  Google Scholar 

  • Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci USA 99:4256–4261

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004a) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004b) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • Matz MV, Lukyanov KA, Lukyanov SA (2002) Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24:953–959

    Article  CAS  PubMed  Google Scholar 

  • Mazel CH, Lesser MP, Gorbunov MY, Barry TM, Farrell JH, Wyman KD, Falkowski PG (2003) Green-fluorescent proteins in Caribbean corals. Limnol Oceanogr 48:402–411

    CAS  Google Scholar 

  • Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, Hoegh-Guldberg O, Devenish RJ, Rossjohn J (2003) The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11:275–284

    Article  CAS  PubMed  Google Scholar 

  • Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417

    Article  Google Scholar 

  • Rowan R, (2004) Coral bleaching—Thermal adaptation in reef coral symbionts. Nature 430:742–742

    Article  CAS  PubMed  Google Scholar 

  • Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  PubMed  Google Scholar 

  • Sawyer SL, Wu LI, Emerman M, Malik HS (2005) Positive selection of primate TRIM5 alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102:2832–2837

    Article  CAS  PubMed  Google Scholar 

  • Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Ugalde JA, Semenova TN, Meyer AS, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous Metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Nei M (2002) Simulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites. Mol Biol Evol 19:1865–1869

    CAS  PubMed  Google Scholar 

  • Swanson WJ, Nielsen R, Yang QF (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20

    CAS  PubMed  Google Scholar 

  • Tavare L (1986) Some probabilistic and statistical problems of the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev Genet 5:366–375

    CAS  Google Scholar 

  • Ugalde JA, Chang BSW, Matz MV (2004) Evolution of coral pigments recreated. Science 305:1433

    Article  CAS  PubMed  Google Scholar 

  • Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homologue DsRed. Nature Struct Biol 7:1133–1138

    CAS  PubMed  Google Scholar 

  • Woolhouse MEJ, Webster PJ, Domingo E, Charlesworth B, Levin BR (2002) Biol and biomedical implications of the coevolution of pathogens and their hosts. Nature Genet 32:569–577

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang ZH (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    CAS  PubMed  Google Scholar 

  • Yang ZH (2005) The power of phylogenetic comparison in revealing protein function. Proc Natl Acad Sci USA 102:3179–3180

    CAS  PubMed  Google Scholar 

  • Yang ZH, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

  • Yang ZH, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    CAS  PubMed  Google Scholar 

  • Yang ZH, Nielsen R, Goldman N, Pedersen AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  Google Scholar 

  • Yanushevich YG, Staroverov DB, Savitsky AP, Fradkov AF, Gurskaya NG, Bulina ME, Lukyanov KA, Lukyanov SA (2002) A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett 511:11–14

    Article  CAS  PubMed  Google Scholar 

  • Yarbrough D, Wachter RM, Kallio K, Matz MV, Remington SJ (2001) Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc Natl Acad Sci USA 98:462–467

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Rosenberg HF (2002) Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci USA 99:5486–5491

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health and U.S. Department of Defense (M.V.M.) and grants from the Natural Sciences and Engineering Research Council of Canada and the Genome Atlantic Centre of Genome Canada (J.P.B.). We thank Dr. Nick V. Grishin for providing access to computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Matz.

Additional information

[Reviewing Editor: Dr. Rasmus Neilsen]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, S.F., Bulina, M.Y., Kelmanson, I.V. et al. Adaptive Evolution of Multicolored Fluorescent Proteins in Reef-Building Corals. J Mol Evol 62, 332–339 (2006). https://doi.org/10.1007/s00239-005-0129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0129-9

Keywords

Navigation