Skip to main content
Log in

Phylogenetic and Biochemical Studies Reveal a Potential Evolutionary Origin of Small Heat Shock Proteins of Animals from Bacterial Class A

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Small heat shock proteins (sHSPs), as one subclass of molecular chaperones, are important for cells to protect proteins under stress conditions. Unlike the large HSPs (represented by Hsp60 and Hsp70), sHSPs are highly divergent in both primary sequences and oligomeric status, with their evolutionary relationships being unresolved. Here the phylogenetic analysis of a representative 51 sHSPs (covering the six subfamilies: bacterial class A, bacterial class B, archae, fungi, plant, and animal) reveals a close relationship between bacterial class A and animal sHSPs which form an outgroup. Accumulating data indicate that the oligomers from bacterial class A and animal sHSPs appear to exhibit polydispersity, while those from the rest exhibit monodispersity. Together, the close evolutionary relationship and the similarity in oligomeric polydispersity between bacterial class A and animal sHSPs not only suggest a potential evolutionary origin of the latter from the former, but also imply that their oligomeric polydispersity is somehow a property determined by their primary sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    CAS  PubMed  Google Scholar 

  • Bova MP, Ding LL, Horwitz J, Fung BK-K (1997) Subunit Exchange of alpha-crystallin. J Biol Chem 272:29511–29517

    Article  CAS  PubMed  Google Scholar 

  • Bova MP, Mchaourab HS, Han Y, Fung BK-K (2000) Subunit exchange of small heat shock proteins. J Biol Chem 275:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Bova MP, Huang Q, Ding L, Horwitz J (2002) Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 165 from Methanococcus jannaschii. J Biol Chem 277:38468–38475

    Article  CAS  PubMed  Google Scholar 

  • Brocchieri L, Karlin S (2000) Conservation among Hsp60 sequences in relation to structure, function and evolution. Protein Sci 9:476–486

    CAS  PubMed  Google Scholar 

  • Bruno WJ, Socci ND, Halpern AL (2000) Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17:189–197

    CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Chang Z, Primm TP, Jakana J, Lee IH, Serysheva I, Chiu W, Gilbert HF, Quiocho FA (1996) Mycobacterium tuberculosis 16-kDa antigen (Hsp163) functions as oligomeric structure in vitro to suppress thermal aggregation J Biol Chem 271:7218-7224

    CAS  PubMed  Google Scholar 

  • Datta SA, Rao CM (2000) Packing-induced conformational and functional changes in the subunits of alpha-crystallin. J Biol Chem 275:41004–41010

    CAS  PubMed  Google Scholar 

  • de Jong WW Leunissen JAM Voorter CEM (1993) Evolution of the a-crystallin/small heat-shock potein family Mol Biol Evol 10(1):103–126

    PubMed  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin—small heat-shock protein superfamily Int J Biol Macromol 22:151–162

    PubMed  Google Scholar 

  • Dobson CM, Karplus M (1999) The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol 9:92–101

    CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. J Biol Chem 274:14867–14874

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap Evolution 39:783–791

    Google Scholar 

  • Felsenstein J, Churchill GA (1996) A hidden Markov model approach to variation among sites in rate of evolution Mol Biol Evol 13(1):93–104

    CAS  PubMed  Google Scholar 

  • Fu X, Li W, Mao Q, Chang Z (2003) Disulfide bonds convert small heat shock protein Hsp163 from a chaperone to a non-chaperone: implications for the evolution of cysteine in molecular chaperones. Biochem Biophys Res Commun 308:627–635

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Abulimiti A, Li W, Chang Z (2003) Monodisperse Hsp163 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. J Mol Biol 319:517–526

    Google Scholar 

  • Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073

    CAS  PubMed  Google Scholar 

  • Gupta RS, Golding B (1993) Evolution of Hsp70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukyrotes. J Mol Evol 37:573–582

    Article  CAS  PubMed  Google Scholar 

  • Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, alphab-crystallin, has a variable quaternary structure. J Mol Biol 277:27–35

    Article  CAS  PubMed  Google Scholar 

  • Haley DA, Bova MP, Huang QL, Mchaourab HS, Stewart PL (2000) Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 298:261–272

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytocol: from nascent chain to folded protein Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White H, Chen S, Raibil H, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J (2004a) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 23:638–649

    Article  CAS  Google Scholar 

  • Haslbeck M, Ignatiou A, Saibil H, Helmich S, Frenzl E, Stromer T, Buchner J (2004b) A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J Mol Biol 343:445–455

    Article  CAS  Google Scholar 

  • Kappe G, Leunissen JA, de Jong W W (2000) Evolution and diversity of prokaryotic small heat shock proteins. Prog Mol Subcell Biol 28:1–17

    Google Scholar 

  • Kim KK, Kim R, Kim SH (1998a) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  CAS  Google Scholar 

  • Kim KK, Yokota H, Kim S-H (1998b) Purification, crystallization and preliminary X-ray crystallographic analysis of small heat shock protein homolog from Methanococcus jannaschii. J Struct Biol 121:76–80

    Article  CAS  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    CAS  PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    CAS  PubMed  Google Scholar 

  • Leroux MR, Melki R, Gordon B, Batelier G, Candido EPMJ (1997) Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J Biol Chem 272:24646–24656

    CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Munchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in Rhizobia. J Bacteriol 181:83–90

    CAS  PubMed  Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93

    CAS  PubMed  Google Scholar 

  • Nikoh N, Hayase N, Iwabe N, Kuma K, Miyata T (1994) Phylogenetic relationship of the kingdoms animalia, plantae and fungi, inferred from 23 different protein sequences. Mol Biol Evol 11:762–768

    CAS  PubMed  Google Scholar 

  • Plesofsky-Vig N, Vig J, Brambl R (1992) Phylogeny of the alpha-crystallin-related heat-shock proteins. J Mol Evol 35:537–545

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-jointing method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  CAS  PubMed  Google Scholar 

  • Shearstone JR, Baneyx F (1999) Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J Biol Chem 274:9937–9945

    Article  CAS  PubMed  Google Scholar 

  • Sobott F, Benesch JLP, Vierling E, Robinson CV (2002) Subunit exchange of multimeric protein complexes. J Biol Chem 277:38921–38929

    Article  CAS  PubMed  Google Scholar 

  • Studer S, Narberhaus F (2000) Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 275:37212–37218

    Article  CAS  PubMed  Google Scholar 

  • Studer S, Obrist M Lentze N, Narberhous F (2002) A critical motif for oligomerization and chaperone activity of bacterial a-heat shock proteins. Eur J Biochem 269:3578–3586

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Mansour M, Crack JA, Gass GL, MacRae TH (2004) Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem 279:39999–40006

    CAS  PubMed  Google Scholar 

  • Suzuki TC, Krawitz DC, Vierling E (1998) The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. Plant Physiol 116:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

  • van de Klundert FA, Smulders RH, Gijsen ML, Lindner RA, Jaenicke R, Carver JA, de Jong WW (1998) The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur J Biochem 258:1014–1021

    PubMed  Google Scholar 

  • Vanhoudt J, Abgar S, Alerts T, Clauwaert J (2000) Native quaternary structure of bovine alpha-crystallin. Biochemistry 39:4483–4492

    Article  CAS  PubMed  Google Scholar 

  • van Montfort RLM, Basha E, Fieldrich KL, Viering E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Struct Biol 8:1025–1030

    PubMed  Google Scholar 

  • Veigner L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    Google Scholar 

  • Vierling E (1991) The roles of heat shock response in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Waters ER (1995) The molecular evolution of the small heat-shock proteins in plants. Genetics 141:785–795

    CAS  PubMed  Google Scholar 

  • Waters ER, Vierling E (1999) The diversion of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16:127–139

    CAS  PubMed  Google Scholar 

  • Waters ER, Lee G, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Key Basic Research Foundation of China (Grant G1999075607) and the National Natural Science Foundation of China (Grant 30270289). The authors wish to thank Dr. Bernard K. K. Fung (Jules Stein Eye Institute, University of California, School of Medicine, Los Angeles) for his kind gift of vector pET20b+ carrying the cDNA gene of rat αA-crystallin, Dr. Sung-Hou Kim (Physical Biosciences Division of the Lawrence Berkeley National Laboratory and Department of Chemistry, University of California at Berkeley) for his kind gift of vector pET21a carrying the gene of M. jannaschii Hsp16.5, and Dr. Elizabeth Vierling (Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson) for his kind gift of vector PJC20 carrying the gene of wheat Hsp16.9. The authors are also grateful for the enlightening discussions and help provided by members of Dr. Chang’s laboratory (especially Mr. Zhang Xuefeng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyi Chang.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Jiao, W. & Chang, Z. Phylogenetic and Biochemical Studies Reveal a Potential Evolutionary Origin of Small Heat Shock Proteins of Animals from Bacterial Class A. J Mol Evol 62, 257–266 (2006). https://doi.org/10.1007/s00239-005-0076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0076-5

Keywords

Navigation