Skip to main content
Log in

Sequence and Functional Conservation of the Intergenic Region Between the Head-to-Head Genes Encoding the Small Heat Shock Proteins αB-Crystallin and HspB2 in the Mammalian Lineage

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

An unexpected feature of the large mammalian genome is the frequent occurrence of closely linked head-to-head gene pairs. Close apposition of such gene pairs has been suggested to be due to sharing of regulatory elements. We show here that the head-to-head gene pair encoding two small heat shock proteins, αB-crystallin and HspB2, is closely linked in all major mammalian clades, suggesting that this close linkage is of selective advantage. Yet αB-crystallin is abundantly expressed in lens and muscle and in response to a heat shock, while HspB2 is abundant only in muscle and not upregulated by a heat shock. The intergenic distance between the genes for these two proteins in mammals ranges from 645 bp (platypus) to 1069 bp (opossum), with an average of about 900 bp; in chicken the distance was the same as in duck (1.6 kb). Phylogenetic footprinting and sequence alignment identified a number of conserved sequence elements close to the HspB2 promoter and two farther upstream. All known regulatory elements of the mouse αB-crystallin promoter are conserved, except in platypus and birds. The lens-specific region 1 (LSR1) and the heat shock elements (HSEs) lack in birds; in platypus the LSR1 is reduced to a Pax-6 site, while the Pax-6 site in LSR2 and a HSE are absent. Most likely the primordial mammalian αB-crystallin promoter had two LSRs and two HSEs. In transfection experiments the platypus αB-crystallin promoter retained heat shock responsiveness and lens expression. It also directed lens expression in Xenopus laevis transgenes, as did the HspB2 promoter of rat or blind mole rat. Deletion of the middle of the intergenic region including the upstream enhancer affected the activity of both the rat αB-crystallin and the HspB2 promoters, suggesting sharing of the enhancer region by the two promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • N Adachi MR Lieber (2002) ArticleTitleBidirectional gene organization: A common architectural feature of the human genome Cell 109 807–809

    Google Scholar 

  • AC Bell AG West G Felsenfeld (1999) ArticleTitleThe protein CTCF is required for the enhancer blocking activity of vertebrate insulators Cell 98 387–396

    Google Scholar 

  • RH Brakenhoff RC Ruuls EH Jacobs JGG Schoenmakers NH Lubsen (1991) ArticleTitleTransgenic Xenopus laevis tadpoles: A transient in vivo model system for the manipulation of lens function and lens development Nucleic Acids Res 19 1279–1284

    Google Scholar 

  • B Burgess-Beusse C Farrell M Gaszner M Litt V Mutskov F Recillas-Targa M Simpson A West G Felsenfeld (2002) ArticleTitleThe insulation of genes from external enhancers and silencing chromatin Proc Natl Acad Sci USA 99 16433–16437

    Google Scholar 

  • LJ Burke T Hollemann T Pieler R Renkawitz (2002) ArticleTitleMolecular cloning and expression of the chromatin insulator protein CTCF in Xenopus laevis Mech Dev 113 95–98

    Google Scholar 

  • CG Chamberlain JW McAvoy (1987) ArticleTitleEvidence that fibroblast growth factor promotes lens fibre differentiation Curr Eye Res 6 1165–1169

    Google Scholar 

  • ET Dermitzakis AG Clark (2002) ArticleTitleEvolution of transcription factor binding sites in mammalian gene regulatory regions: Conservation and turnover Mol Biol Evol 19 1114–1121

    Google Scholar 

  • RA Dubin R Gopal-Srivastava EF Wawrousek J Piatigorsky (1991) ArticleTitleExpression of the murine alphaB-crystallin gene in lens and skeletal muscle:Identification of a muscle-preferred enhancer Mol Cell Biol 11 4340–4349

    Google Scholar 

  • SY Foo GP Nolan (1999) ArticleTitleNF-κB to the rescue: RELs, apoptosis and cellular transformation Trends Genet 15 229–235 Occurrence Handle10.1016/S0168-9525(99)01719-9 Occurrence Handle1:CAS:528:DyaK1MXjvVGqtb4%3D Occurrence Handle10354583

    Article  CAS  PubMed  Google Scholar 

  • R Gopal-Srivastava J Piatigorsky (1993) ArticleTitleThe murine alphaB-crystallin/small heat shock protein enhancer: Identification of alphaBE-1, alphaBE-2, alphaBE-3, and MRF control elements Mol Cell Biol 13 7144–7152

    Google Scholar 

  • R Gopal-Srivastava J Piatigorsky (1994) ArticleTitleIdentification of a lens-specific regulatory region (LSR) of the murine alphaB-crystallin gene Nucleic Acids Res 22 1281–1286

    Google Scholar 

  • R Gopal-Srivastava JI Haynes J Piatigorsky (1995) ArticleTitleRegulation of the murine alphaB-crystallin/small heat shock protein gene in cardiac muscle Mol Cell Biol 15 7081–7090

    Google Scholar 

  • R Gopal-Srivastava A Cvekl J Piatigorsky (1996) ArticleTitlePax-6 and alphaB-crystallin/small heat shock protein gene regulation in the murine lens. Interaction with the lens-specific regions, LSR1 and LSR2 J Biol Chem 271 23029–23036

    Google Scholar 

  • R Gopal-Srivastava A Cvekl J Piatigorsky (1998) ArticleTitleInvolvement of retinoic acid/retinoid receptors in the regulation of murine alphaB-crystallin/small heat shock protein gene expression in the lens J Biol Chem 273 17954–17961

    Google Scholar 

  • JJ Hansen P Bross M Westergaard MN Nielsen H Eiberg A Borglum J Mogensen K Kristiansen L Bolund N Gregersen (2003) ArticleTitleGenomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter Hum Genet 112 71–77

    Google Scholar 

  • RB Hough A Avivi J Davis A Joel E Nevo J Piatigorsky (2002) ArticleTitleAdaptive evolution of small heat shock protein/alphaB-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi Proc Natl Acad Sci USA 99 8145–8150

    Google Scholar 

  • K Ishihara H Sasaki (2002) ArticleTitleAn evolutionarily conserved putative insulator element near the 3′ boundary of the imprinted Igf2/H19 domain Hum Mol Genet 11 1627–1636

    Google Scholar 

  • A Iwaki T Nagano M Nakagawa T Iwaki Y Fukumaki (1997) ArticleTitleIdentification and characterization of the gene encoding a new member of the alpha-crystallin/small hsp family, closely linked to the alphaB-crystallin gene in a head-to-head manner Genomics 45 386–394

    Google Scholar 

  • EJ Jansen TM Holling F Herp Particlevan GJ Martens (2002) ArticleTitleTransgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis FEBS Lett 516 201–207

    Google Scholar 

  • JT Kadonaga (2002) ArticleTitleThe DPE, a core promoter element for transcription by RNA polymerase II Exp Mol Med 34 259–264

    Google Scholar 

  • G Kappé E Franck P Verschuure WC Boelens JAM Leunissen WW Jong Particlede (2003) ArticleTitleThe human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10 Cell Stress Chaperones 8 53–61 Occurrence Handle10.1379/1466-1268(2003)8<53:THGECS>2.0.CO;2 Occurrence Handle1:CAS:528:DC%2BD3sXjsFWjsL4%3D Occurrence Handle12820654

    Article  CAS  PubMed  Google Scholar 

  • E Klok NH Lubsen CG Chamberlain JW McAvoy (1998) ArticleTitleInduction and maintenance of differentiation of rat lens epithelium by FGF-2, insulin and IGF-1 Exp Eye Res 67 425–431

    Google Scholar 

  • EJ Kuhn PK Geyer (2003) ArticleTitleGenomic insulators: Connecting properties to mechanism Curr Opin Cell Biol 15 259–265

    Google Scholar 

  • M Labrador VG Corces (2002) ArticleTitleSetting the boundaries of chromatin domains and nuclear organization Cell 111 151–154

    Google Scholar 

  • RG Meyer ML Meyer-Ficca EL Jacobson MK Jacobson (2003) ArticleTitleHuman poly(ADP-ribose) glycohydrolase (PARG) gene and the common promoter sequence it shares with inner mitochondrial membrane translocase 23 (TIM23) Gene 314 181–190

    Google Scholar 

  • R Ohlsson R Renkawitz V Lobanenkov (2001) ArticleTitleCTCF is a uniquely versatile transcription regulator linked to epigenetics and disease Trends Genet 17 520–527

    Google Scholar 

  • DM Otte U Schwaab GH Luers (2003) ArticleTitleThe Pxmp2 and PoleI genes are linked by a bidirectional promoter in an evolutionary conserved fashion Gene 313 119–126

    Google Scholar 

  • R Peek RW Niessen JG Schoenmakers NH Lubsen (1991) ArticleTitleDNA methylation as a regulatory mechanism in rat gamma-crystallin gene expression Nucleic Acids Res 19 77–83

    Google Scholar 

  • K Phillips B Luisi (2000) ArticleTitleThe virtuoso of versatility: POU proteins that flex to fit J Mol Biol 302 1023–1039

    Google Scholar 

  • D Posada KA Crandall (1998) ArticleTitleMODELTEST: Testing the model of DNA substitution Bioinformatics 14 817–818 Occurrence Handle10.1093/bioinformatics/14.9.817 Occurrence Handle1:CAS:528:DyaK1MXktlCltw%3D%3D Occurrence Handle9918953

    Article  CAS  PubMed  Google Scholar 

  • B Schuettengruber A Doetzlhofer K Kroboth E Wintersberger C Seiser (2003) ArticleTitleAlternate activation of two divergently transcribed mouse genes from a bidirectional promoter is linked to changes in histone modification J Biol Chem 278 1784–1793

    Google Scholar 

  • PE Shaw J Saxton (2003) ArticleTitleTernary complex factors: Prime nuclear targets for mitogen-activated protein kinases Int J Biochem Cell Biol 35 1210–1226

    Google Scholar 

  • R Shin MJ Kim KH Paek (2003) ArticleTitleThe CaTin1 (Capsicum annuum TMV-induced clone 1) and CaTin1-2 genes are linked head-to-head and share a bidirectional promoter Plant Cell Physiol 44 549–554

    Google Scholar 

  • E Shinya T Shimada (1994) ArticleTitleIdentification of two initiator elements in the bidirectional promoter of the human dihydrofolate reductase and mismatch repair protein1 genes Nucleic Acids Res 22 2143–2149

    Google Scholar 

  • MS Springer M Stanhope O Madsen WW Jong Particlede (2004) ArticleTitleMolecules consolidate the placental mammal tree Trends Ecol Evol 19 430–438

    Google Scholar 

  • AN Srinivasan SP Bhat (1994) ArticleTitleComplete structure and expression of the rat alphaB-crystallin gene DNA Cell Biol 13 651–661

    Google Scholar 

  • A Suzuki Y Sugiyama Y Hayashi N Nyu-I M Yoshida I Nonaka S Ishiura K Arahata S Ohno (1998) ArticleTitleMKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase J Cell Biol 140 1113–1124 Occurrence Handle10.1083/jcb.140.5.1113 Occurrence Handle1:CAS:528:DyaK1cXhslKqsbc%3D Occurrence Handle9490724

    Article  CAS  PubMed  Google Scholar 

  • SK Swamynathan J Piatigorsky (2002) ArticleTitleOrientation-dependent influence of an intergenic enhancer on the promoter activity of the divergently transcribed mouse Shsp/alphaB-crystallin and Mkbp/HspB2 genes J Biol Chem 277 49700–49706

    Google Scholar 

  • DL Swofford (2002) PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) EditionNumber4.0 ed. Sinauer Sunderland, MA

    Google Scholar 

  • D Takai PA Jones (2003) ArticleTitleThe origins of bi-directional promoters—computational analyses of intergenic distances in the human genome Mol Biol Evol . .

    Google Scholar 

  • WW Wasserman M Palumbo W Thompson JW Fickett CE Lawrence (2000) ArticleTitleHuman-mouse genome comparisons to locate regulatory sites Nat Genet 26 225–228 Occurrence Handle10.1038/79965 Occurrence Handle1:CAS:528:DC%2BD3cXntlGmsL0%3D Occurrence Handle11017083

    Article  CAS  PubMed  Google Scholar 

  • G Wistow C Graham (1995) ArticleTitleThe duck gene for alphaB-crystallin shows evolutionary conservation of discrete promoter elements but lacks heat and osmotic shock response Biochim Biophys Acta 1263 105–113

    Google Scholar 

  • GA Wray MW Hahn E Abouheif JP Balhoff M Pizer MV Rockman LA Romano (2003) ArticleTitleThe evolution of transcriptional regulation in eukaryotes Mol Biol Evol 20 1377–1419 Occurrence Handle10.1093/molbev/msg140 Occurrence Handle1:CAS:528:DC%2BD3sXntlantLw%3D Occurrence Handle12777501

    Article  CAS  PubMed  Google Scholar 

  • S Yoshida H Harada H Nagai K Fukino A Teramoto M Emi (2002) ArticleTitleHead-to-head juxtaposition of Fas-associated phosphatase-1 (FAP-1) and c-Jun NH2-terminal kinase (JNK3) genes: Genomic structure and seven polymorphisms of the FAP-1 gene J Hum Genet 47 614–619

    Google Scholar 

  • LF Zhang JH Ding BZ Yang GC He C Roe (2003) ArticleTitleCharacterization of the bidirectional promoter region between the human genes encoding VLCAD and PSD-95 Genomics 82 660–668

    Google Scholar 

  • J Zhu JL Liu CE Lawrence (1998) ArticleTitleBayesian adaptive sequence alignment algorithms Bioinformatics 14 25–39

    Google Scholar 

Download references

Acknowledgments

We thank Erik Jansen for technical support with the Xenopus transgenesis. This investigation was supported by the Research Council for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO) and by the European Commission (TMR ERB-FMRX-CT98-0221 and BMH4-CT98-3895).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolette H. Lubsen.

Additional information

Reviewing Editor: Dr. Manyuan Long

(Linda Doerwald and Teun Van Rheede) Both authors contributed equally.

(Teun van Rheede) Deceased May 21, 2003.

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doerwald, L., van Rheede, T., Dirks, R.P. et al. Sequence and Functional Conservation of the Intergenic Region Between the Head-to-Head Genes Encoding the Small Heat Shock Proteins αB-Crystallin and HspB2 in the Mammalian Lineage. J Mol Evol 59, 674–686 (2004). https://doi.org/10.1007/s00239-004-2659-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-2659-y

Keywords

Navigation