Skip to main content
Log in

Evolution of the Genetic Triplet Code via Two Types of Doublet Codons

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 19 July 2006

Abstract

Explaining the apparent non-random codon distribution and the nature and number of amino acids in the ‘standard’ genetic code remains a challenge, despite the various hypotheses so far proposed. In this paper we propose a simple new hypothesis for code evolution involving a progression from singlet to doublet to triplet codons with a reading mechanism that moves three bases each step. We suggest that triplet codons gradually evolved from two types of ambiguous doublet codons, those in which the first two bases of each three-base window were read (‘prefix’ codons) and those in which the last two bases of each window were read (‘suffix’ codons). This hypothesis explains multiple features of the genetic code such as the origin of the pattern of four-fold degenerate and two-fold degenerate triplet codons, the origin of its error minimising properties, and why there are only 20 amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amirnovin R, (1997) An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol 44:473–476

    PubMed  Google Scholar 

  • Ardell DH, Sella G (2002) No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos Trans R Soc Lond B Biol Sci 357:1625–1642

    Article  PubMed  Google Scholar 

  • Becker HD, Giege R, Kern D (1996) Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Biochemistry 35:7447–7458

    Article  PubMed  Google Scholar 

  • Bertman MO, Jungck JR (1979) Group graph of the genetic code. J Hered 70:379–384

    PubMed  Google Scholar 

  • Blight SK, Larue RC, Mahapatra A, Longstaff DG, Chang E, Zhao G, Kang PT, Green-Church KB, Chan MK, Krzycki JA (2004) Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431:333–335

    Article  PubMed  Google Scholar 

  • Bock A, Forchhammer K, Heider J, Baron C (1991) Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16:463–467

    Article  PubMed  Google Scholar 

  • Brown JR, Doolittle WF (1999) Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J Mol Evol 49:485–495

    PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    PubMed  Google Scholar 

  • Charron C, Roy H, Blaise M, Giege R, Kern D (2003) Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain. EMBO J 22:1632–1643

    Article  PubMed  Google Scholar 

  • Crick FH (1966) Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    PubMed  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  Google Scholar 

  • Cusack S, Yaremchuk A, Tukalo M (1996) The crystal structures or T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J 15:6321–6343

    PubMed  Google Scholar 

  • Dennis PP (1997) Ancient ciphers: translation in Archaea. Cell 89: 1007–1010

    Article  PubMed  Google Scholar 

  • Di Giulio M (2002) Genetic code origin: Are the pathways of type Glu-tRNA(Gln) ( Gln-tRNA(Gln) molecular fossils or not? J Mol Evol 55:616–622

    Google Scholar 

  • Farabaugh PJ, Bjork GR (1999) How translational accuracy influents reading frame maintenance. EMBO J 18:1427–1434

    Article  PubMed  Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47:238–248

    PubMed  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    PubMed  Google Scholar 

  • Freeland SJ, Wu T, Keulmann N (2003) The case for an error minimizing standard genetic code. Orig Life Evol Biosph 33:457–477

    Article  PubMed  Google Scholar 

  • Fukai S, Nureki O, Sekine S, Shimada A, Vassylyev DG, Yokoyama S (2003) Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase. RNA 9:100–111

    Article  PubMed  Google Scholar 

  • Giege R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26:5017–5035

    Article  PubMed  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure or error minimization in the genetic code. J Mol Evol 33:412–417

    Article  PubMed  Google Scholar 

  • Hayes B (1998) The invention of the genetic code. Am Sci 86:8–14

    Article  Google Scholar 

  • Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  PubMed  Google Scholar 

  • Ibba M, Curnow AW, Soil D (1997) Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci 22:39–42

    Article  PubMed  Google Scholar 

  • Knight RD, Landweber LF (2000) The early evolution of the genetic code. Cell 101:569–572

    Article  PubMed  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 24:241–247

    Article  PubMed  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58

    Article  PubMed  Google Scholar 

  • Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, Sakamoto K, Yokoyama S (2003) Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat Struct Biol 10:425–432

    Article  PubMed  Google Scholar 

  • Lamour V, Quevillon S, Diriong S, N’Guyen VC, Lipinski M, Mirande M (1994) Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc Natl Acad Sci USA 91:8670–8674

    PubMed  Google Scholar 

  • Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation, Proc Natl Acad Sci USA 91:6729–6734

    PubMed  Google Scholar 

  • Mehl RA, Anderson JC, Santoro SW, Wang L, Martin AB, King DS, Horn DM, Schultz PG (2003) Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 125:935–939

    Article  PubMed  Google Scholar 

  • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–732

    Article  PubMed  Google Scholar 

  • Polycarpo C, Ambrogelly A, Berube A, Winbush SM, McCloskey JA, Grain PF, Wood JL, Soll D (2004) An aminoacy-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci USA 101:12450–12454

    Article  PubMed  Google Scholar 

  • Ribas de Pouplana L, Schimmel P (2001) Operational RNA code for amino acids in relation to genetic code in evolution. J Biol Chem 276:6881–6884

    Article  PubMed  Google Scholar 

  • Rodin S, Rodin A, Ohno S (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542

    Article  PubMed  Google Scholar 

  • Sankaranarayanan R, Moras D (2001) The fidelity of the translation of the genetic code. Acta Biochim Pol 48:323–335

    PubMed  Google Scholar 

  • Sankaranarayanan R, Dock-Bregeon AC, Romby P, Caillet J, Springer M, Rees B, Ehresmann C, Ehresmann B, Moras D (1999) The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97:371–381

    Article  PubMed  Google Scholar 

  • Schimmel P(1996)Origin of genetic code: A needle in the haystack of tRNA sequences. Proc Natl Acad Sci USA 93:4521–4522

    Article  PubMed  Google Scholar 

  • Schimmel P, Giege R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    PubMed  Google Scholar 

  • Sekine S, Nureki O, Shimada A, Vassylyev DG, Yokoyama S (2001) Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol 8:203–206

    Article  PubMed  Google Scholar 

  • Shimizu M, Asahara H, Tamura K, Hasegawa T, Himeno H (1992) The role of anticodon bases and the discriminator nucleotide in the recognition of some E. coli tRNAs by their aminoacyl-tRNA synthetases. J Mol Evol 35:436–434

    PubMed  Google Scholar 

  • Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462

    Article  PubMed  Google Scholar 

  • Stahl G, McCarty GP, Farabaugh PJ (2002) Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding. Trends Biochem Sci 27:178–183

    Article  PubMed  Google Scholar 

  • Taylor FJ, Coates D (1989) The code within the codons. Biosystems 22:177–187

    Article  PubMed  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Venter JC, et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  PubMed  Google Scholar 

  • Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, Rapp BA (2000) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 28:10–14

    Article  PubMed  Google Scholar 

  • Woese CR (1965a) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    Google Scholar 

  • Woese CR (1965b) Order in the genetic code, Proc Natl Acad Sci USA 54:71–75

    Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236

    Article  PubMed  Google Scholar 

  • Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of aminoacyl-tRNA synthetases–analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9:689–710

    PubMed  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    PubMed  Google Scholar 

  • Yaremchuk A, Cusack S, Tukalo M (2000) Crystal structure of a eukaryote/archaeon-like protyl-tRNA synthetase and its complex with tRNAPro(CGG). EMBO J 19:4745–4758

    Article  PubMed  Google Scholar 

  • Yockey HP (2000) Origin of life on earth and Shannon’s theory of communication. Comput Chem 24:105–123

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Edward Feil, Alex Jeffries, and Jonathan Slack for helpful discussions. The manuscript was improved by comments from three anonymous referees and from Laura Landweber, the associate editor of this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to den van Elsen.

Additional information

Reviewing Editor: Dr. Laura Landweber

An erratum to this article can be found at http://dx.doi.org/10.1007/s00239-005-6224-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HL., Bagby, S., M.H., J. et al. Evolution of the Genetic Triplet Code via Two Types of Doublet Codons. J Mol Evol 61, 54–64 (2005). https://doi.org/10.1007/s00239-004-0224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0224-3

Keywords

Navigation