Skip to main content
Log in

Pathway Length and Evolutionary Constraint in Amino Acid Biosynthesis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The evolutionary properties of a metabolic network may be determined by the topology of the network. One attribute of pathways that make up the network is the number of enzymatic steps between initial substrates and final products. To determine the effect of pathway length on evolutionary lability of pathway structure, we examined amino acid biosynthetic pathways across 48 sequenced organisms. We demonstrate that longer pathways exhibit lower rates of change in pathway structure than shorter pathways. This finding suggests that increasing complexity may increase constraint on evolutionary change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. R Alves RAG Chaleil MJE Sternberg (2002) ArticleTitleEvolution of enzymes in metabolism: a network perspective. J Mol Biol 320 751–770 Occurrence Handle10.1016/S0022-2836(02)00546-6 Occurrence Handle1:CAS:528:DC%2BD38XltVShtLk%3D Occurrence Handle12095253

    Article  CAS  PubMed  Google Scholar 

  2. GC Barrett DT Elmore (1998) Amino acids and peptides. Cambridge University Press New York

    Google Scholar 

  3. N Barton L Partridge (2000) ArticleTitleLimits to natural selection. BioEssays 22 1075–1084 Occurrence Handle10.1002/1521-1878(200012)22:12<1075::AID-BIES5>3.0.CO;2-M Occurrence Handle1:CAS:528:DC%2BD3MXmslWmtbs%3D Occurrence Handle11084623

    Article  CAS  PubMed  Google Scholar 

  4. DA Bender (1985) Amino acid metabolism. John Wiley & Sons New York

    Google Scholar 

  5. GEP Box DR Cox (1964) ArticleTitleAn analysis of transformations. J Roy Stat Soc Ser B 26 211–243 Occurrence Handle1:STN:280:BiqC283ptFU%3D Occurrence Handle3982271

    CAS  PubMed  Google Scholar 

  6. AF Chalker HW Minehart NJ Hughes KK Koretke MA Lonetto KK Brinkman PV Warren A Lupas JR Stanhope, Brown PS Hoffman (2001) ArticleTitleSystematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J Bacteriol 183 1259–1268 Occurrence Handle10.1128/JB.183.4.1259-1268.2001 Occurrence Handle1:CAS:528:DC%2BD3MXhtVGmsbw%3D Occurrence Handle11157938

    Article  CAS  PubMed  Google Scholar 

  7. A Cornish-Bowden ML Cardenas (2002) ArticleTitleSystems biology: Metabolic balance sheets. Nature 420 129–130 Occurrence Handle10.1038/420129a Occurrence Handle1:CAS:528:DC%2BD38Xos1Ggu7c%3D Occurrence Handle12432369

    Article  CAS  PubMed  Google Scholar 

  8. ME Feder NV Cartano L Milos RA Krebs SL Lindquist (1996) ArticleTitleEffect of engineering Hsp 70 copy number on Hsp 70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J Exp Biol 199 1837–1844 Occurrence Handle1:CAS:528:DyaK28XlsVCktL8%3D Occurrence Handle8708583

    CAS  PubMed  Google Scholar 

  9. RA Fisher (1930) The genetical theory of natural selection. Oxford University Press Oxford

    Google Scholar 

  10. HB Fraser AE Hirch LM Steinmetz C Scharfe MW Feldman (2002) ArticleTitleEvolutionary rate in the protein interaction network. Science 296 750–752 Occurrence Handle10.1126/science.1068696 Occurrence Handle1:CAS:528:DC%2BD38XjtlOntrc%3D Occurrence Handle11976460

    Article  CAS  PubMed  Google Scholar 

  11. CV Forst K Schulten (2001) ArticleTitlePhylogenetic analysis of metabolic pathways. J Mol Evol 52 471–489 Occurrence Handle1:CAS:528:DC%2BD3MXksFOitbc%3D Occurrence Handle11443351

    CAS  PubMed  Google Scholar 

  12. BS Goldman RG Kranz (1998) ArticleTitleEvolution and horizontal transfer of an entire biosynthetic pathway for cytochrome c biogenesis: Helicobacter, Deinococcus, Archae and more. Mol Microbiol 27 871–873 Occurrence Handle10.1046/j.1365-2958.1998.00708.x Occurrence Handle1:CAS:528:DyaK1cXhsVGit7k%3D Occurrence Handle9515711

    Article  CAS  PubMed  Google Scholar 

  13. ZL Gu LM Steinmetz X Gu C Scharfe RW Davis WH Li (2003) ArticleTitleRole of duplicate genes in genetic robustness against null mutations. Nature 421 63–66 Occurrence Handle10.1038/nature01198 Occurrence Handle1:CAS:528:DC%2BD3sXos1M%3D Occurrence Handle12511954

    Article  CAS  PubMed  Google Scholar 

  14. KM Herrmann RL Somerville (1983) Amino acids: Biosynthesis and genetic regulation. Addison–Wesley Reading, MA

    Google Scholar 

  15. MA Huynen T Dandekar P Bork (1999) ArticleTitleVariation and evolution of the citric acid cycle: a genomic perspective. Trends Microbiol 7 281–291 Occurrence Handle10.1016/S0966-842X(99)01539-5 Occurrence Handle1:STN:280:DyaK1Mzit1eisg%3D%3D Occurrence Handle10390638

    Article  CAS  PubMed  Google Scholar 

  16. M Kanehisa S Goto S Kawashima A Nakaya (2002) ArticleTitleThe KEGG databases at GenomeNet. Nucleic Acids Res 30 42–46 Occurrence Handle10.1093/nar/30.1.42 Occurrence Handle1:CAS:528:DC%2BD38Xht12ksbc%3D Occurrence Handle11752249

    Article  CAS  PubMed  Google Scholar 

  17. PD Karp M Riley S Paley A Pellegrini-Toole (2002) ArticleTitleThe MetaCyc Database. Nucleic Acids Res 30 IssueID1 59 Occurrence Handle1:CAS:528:DC%2BD38Xht12ktro%3D Occurrence Handle11752254

    CAS  PubMed  Google Scholar 

  18. G Kolesov HW Mewes D Frishman (2001) ArticleTitleSNAPping up functionally related genes based on context information: a colinearity-free approach. J Mol Biol 311 639–656 Occurrence Handle10.1006/jmbi.2001.4701 Occurrence Handle1:CAS:528:DC%2BD3MXmtFGgtrk%3D Occurrence Handle11518521

    Article  CAS  PubMed  Google Scholar 

  19. J Li S Saxena D Pain A Dancis (2001) ArticleTitleAdrenodoxin reductase homolog (Arhlp) of yeast mitochondria required for iron homeostasis. J Biol Chem 276 1503–1509 Occurrence Handle1:CAS:528:DC%2BD3MXmtV2gtw%3D%3D Occurrence Handle11035018

    CAS  PubMed  Google Scholar 

  20. WP Maddison DR Maddison (2000) MacClade: Analysis of phylogeny and character evolution, version 4.0. Sinauer Associates Sunderland, MA

    Google Scholar 

  21. DW McShea (1996) ArticleTitleMetazoan complexity: Is there a trend? Perspect Evol 50 477–492

    Google Scholar 

  22. HA Orr (2000) ArticleTitleAdaptation and the cost of complexity. Evolution 54 13–20 Occurrence Handle1:STN:280:DC%2BD3cvjsFOmuw%3D%3D Occurrence Handle10937178

    CAS  PubMed  Google Scholar 

  23. R Overbeek N Larsen T Walunas M D’Souza G Pusch E Selkov Jr. K Liolios V Joukov D Kaznadzey I Anderson A Bhattacharyya H Burd W Gardner P Hanke V Kapatral N Mikhailova O Vasieva A Osterman V Vonstein M Fonstein N Ivanova N Kyrpides (2003) ArticleTitleThe ERGO(TM) genome analysis and discovery system. Nucleic Acids Res 31 164–171 Occurrence Handle10.1093/nar/gkg148 Occurrence Handle1:CAS:528:DC%2BD3sXhvFSntrk%3D Occurrence Handle12519973

    Article  CAS  PubMed  Google Scholar 

  24. D Posada KA Crandall (1998) ArticleTitleMODELTEST: Testing the model of DNA substitution. Bioinformatics 14 817–818 Occurrence Handle10.1093/bioinformatics/14.9.817 Occurrence Handle1:CAS:528:DyaK1MXktlCltw%3D%3D Occurrence Handle9918953

    Article  CAS  PubMed  Google Scholar 

  25. MD Rausher RE Miller P Tiffin (1999) ArticleTitlePatterns of evolutionary rate variation among genes of the anthocyanin biosynthesis pathway. Mol Biol Evol 16 266–274 Occurrence Handle1:CAS:528:DyaK1MXht1elt7o%3D Occurrence Handle10028292

    CAS  PubMed  Google Scholar 

  26. SCG Rison SA Teichmann JM Thornton (2002) ArticleTitleHomology, pathway distance, and chromosomal localization of the small molecule metabolism enzymes in Escherichia coli. J Mol Biol 318 911–932 Occurrence Handle10.1016/S0022-2836(02)00140-7 Occurrence Handle1:CAS:528:DC%2BD38Xks1Krsb4%3D Occurrence Handle12054833

    Article  CAS  PubMed  Google Scholar 

  27. InstitutionalAuthorNameSAS Institute (1990) SAS/STAT user’s guide, version, 6. SAS Institute Cary, NC

    Google Scholar 

  28. DL Swofford (1998) Paup* 4.0: Phylogentic analysis using parsimony (and other methods). Sinauer Associates Sunderland, MA

    Google Scholar 

  29. RL Tatusov AR Mushegian P Bork NP Brown WS Hayes M Borodovsky KE Rudd EV Koonin (1996) ArticleTitleMetabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol 6 279–291 Occurrence Handle1:CAS:528:DyaK28XhvFymurs%3D Occurrence Handle8805245

    CAS  PubMed  Google Scholar 

  30. JD Thompson TJ Gibson F Plewniak F Jeanmougin DG. Higgins (1997) ArticleTitleThe ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24 4876–4882 Occurrence Handle10.1093/nar/25.24.4876

    Article  Google Scholar 

  31. A Wagner (2001) ArticleTitleEstimating coarse gene network structure from large-scale gene perturbation data. Genome Res 12 309–315 Occurrence Handle10.1101/gr.193902

    Article  Google Scholar 

  32. SR Whitt LM Wilson MI Tenaillon BS Gaut ES Buckler (2002) ArticleTitleGenetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99 12959–12962 Occurrence Handle10.1073/pnas.202476999 Occurrence Handle1:CAS:528:DC%2BD38XnvFGht7Y%3D Occurrence Handle12244216

    Article  CAS  PubMed  Google Scholar 

  33. EI Wilding JR Brown AP Bryant AF Chalker DJ Holmes KA Ingraham S Iordanescu YS Chi M Rosenberg MN Gwynn (2000) ArticleTitleIdentification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive cocci. J Bacteriol 182 4319–4327 Occurrence Handle1:CAS:528:DC%2BD3cXlt1Sgs7c%3D Occurrence Handle10894743

    CAS  PubMed  Google Scholar 

  34. J Wuyts Y Van de Peer T Winkelmans R De Wachter (2002) ArticleTitleThe European database on small subunit ribosomal RNA. Nucleic Acids Res 30 183–185 Occurrence Handle10.1093/nar/30.1.183 Occurrence Handle1:CAS:528:DC%2BD38Xht12ktbY%3D Occurrence Handle11752288

    Article  CAS  PubMed  Google Scholar 

  35. M Zuniga G Perez F Gonzalez-Candelas (2002) ArticleTitleEvolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol 25 429–444 Occurrence Handle10.1016/S1055-7903(02)00277-4 Occurrence Handle1:CAS:528:DC%2BD38Xosl2gtL0%3D Occurrence Handle12450748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Oakley for invaluable advice and discussion and C. Fenster, A. Gibson, M, Hahn, D. McShea, C. Murren, M. Rausher, and the Duke University Population Biology group for technical assistance, helpful discussion, and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Rutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutter, M.T., Zufall, R.A. Pathway Length and Evolutionary Constraint in Amino Acid Biosynthesis . J Mol Evol 58, 218–224 (2004). https://doi.org/10.1007/s00239-003-2546-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2546-y

Keywords

Navigation