Skip to main content

Advertisement

Log in

EVG, the Remnants of a Primordial Bilaterian’s Synteny of Functionally Unrelated Genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Extant genomes are the result of repeated duplications and subsequent divergence of primordial genes that assembled the genomes of the first living beings. Increased information on genome maps of different species is revealing conserved syntenies among different vertebrate taxa, which allow to trace back the history of current chromosomes. However, inferring neighboring relationships between genes of more primitive genomes has proven to be very difficult. Most often, the ancestral arrangements of genes have been lost by multiple histories of internal duplications, chromosomal breaks, and large-scale genomic rearrangements. Here we describe a gene arrangement of nonrelated genes that seems to have endured evolution, at least from the separation of the two major clades of bilateria: deuterostomia and protostomia, approximately 1 billion years ago. In its simplest conception, this gene cluster, named EVG, groups the genes for a glucose transporter, an enolase, and a vesicle-associated membrane protein (VAMP). EVG might represent the evolutionary remnants of the gene organization of an ancient bilaterian genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. L Abi-Rached A Gilles T Shiina P Pontarotti H Inoko (2002) ArticleTitleEvidence of en bloc duplication in vertebrate genomes. Nature Genet 31 100–105 Occurrence Handle10.1038/ng855 Occurrence Handle1:CAS:528:DC%2BD38Xjt1Kgu7k%3D Occurrence Handle11967531

    Article  CAS  PubMed  Google Scholar 

  2. FJ Ayala A Rzhetsky (1998) ArticleTitleOrigin of the metazoan phyla: Molecular clocks confirm paleontological estimates. Proc Natl Acad Sci USA 95 606–611 Occurrence Handle10.1073/pnas.95.2.606 Occurrence Handle1:CAS:528:DyaK1cXmtFajsg%3D%3D Occurrence Handle9435239

    Article  CAS  PubMed  Google Scholar 

  3. D Birnbaum F Coulier MJ Pebusque P Pontarotti (2000) ArticleTitle“Paleogenomics”: Looking in the past to the future. J Exp Zool 288 21–22 Occurrence Handle10.1002/(SICI)1097-010X(20000415)288:1<21::AID-JEZ2>3.0.CO;2-Q Occurrence Handle1:STN:280:DC%2BD3c3hsFSjtg%3D%3D Occurrence Handle10750049

    Article  CAS  PubMed  Google Scholar 

  4. JG Bishop VG Corces (1990) ArticleTitleThe nucleotide sequence of a Drosophila melanogaster enolase gene. Nucleic Acids Res 18 191 Occurrence Handle1:CAS:528:DyaK3cXhslegtbc%3D Occurrence Handle2106662

    CAS  PubMed  Google Scholar 

  5. AM Boutanaev AI Kalmykova YY Shevelyov DI Nurminsky (2002) ArticleTitleLarge clusters of co-expressed genes in the Drosophila genome. Nature 420 666–669 Occurrence Handle10.1038/nature01216 Occurrence Handle1:CAS:528:DC%2BD38XpsVSitbk%3D Occurrence Handle12478293

    Article  CAS  PubMed  Google Scholar 

  6. M Carmo-Fonseca (2002) ArticleTitleThe contribution of nuclear compartmentalization to gene regulation. Cell 108 513–521 Occurrence Handle1:CAS:528:DC%2BD38XhvF2jsrY%3D Occurrence Handle11909522

    CAS  PubMed  Google Scholar 

  7. H Caron B van Schaik M van der Mee F Baas G Riggins P van Sluis MC Hermus R van Asperen K Boon PA Voute S Heisterkamp A van Kampen R Versteeg (2001) ArticleTitleThe human transcriptome map: Clustering of highly expressed genes in chromosomal domains. Science 291 1289–1292 Occurrence Handle1:CAS:528:DC%2BD3MXhtlSgs70%3D Occurrence Handle11181992

    CAS  PubMed  Google Scholar 

  8. InstitutionalAuthorNameThe C. elegans Sequencing Consortium (1998) ArticleTitleGenome sequence of the nematode C. elegans: A platform for investigating biology. Science 282 2012–2018 Occurrence Handle9851916

    PubMed  Google Scholar 

  9. EM De Robertis Y Sasai (1996) ArticleTitleA common plan for dorsoventral patterning in Bilateria. Nature 380 37–40 Occurrence Handle1:CAS:528:DyaK28XhsFeis7c%3D Occurrence Handle8598900

    CAS  PubMed  Google Scholar 

  10. A DiAntonio RW Burgess AC Chin DL Deitcher RH Scheller TL Schwarz (1993) ArticleTitleIdentification and characterization of Drosophila genes for synaptic vesicle proteins. J Neurosci 13 4924–4935 Occurrence Handle1:CAS:528:DyaK2cXlt1Oh Occurrence Handle8229205

    CAS  PubMed  Google Scholar 

  11. SA Escher A Rasmuson-Lestander (1999) ArticleTitleThe Drosophila glucose transporter gene: cDNA sequence, phylogenetic comparisons, analysis of functional sites and secondary structures. Hereditas 130 95–103 Occurrence Handle1:CAS:528:DyaK1MXmtVSmsr8%3D Occurrence Handle10479996

    CAS  PubMed  Google Scholar 

  12. X Gu Y Wang J Gu (2002) ArticleTitleAge distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nature Genet 31 205–209 Occurrence Handle10.1038/ng902 Occurrence Handle1:CAS:528:DC%2BD38XktVKgt7o%3D Occurrence Handle12032571

    Article  CAS  PubMed  Google Scholar 

  13. MJ Lercher AO Urrutia LD Hurst (2002) ArticleTitleClustering of housekeeping genes provides a unified model of gene order in the human genome. Nature Genet 31 180–183 Occurrence Handle10.1038/ng887 Occurrence Handle1:CAS:528:DC%2BD38XktVKgtrw%3D Occurrence Handle11992122

    Article  CAS  PubMed  Google Scholar 

  14. MJ Lercher T Blumenthal LD Hurst (2003) ArticleTitleCoexpression of neighboring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. Genome Res 13 238–243 Occurrence Handle10.1101/gr.553803 Occurrence Handle1:CAS:528:DC%2BD3sXhtlCrsL0%3D Occurrence Handle12566401

    Article  CAS  PubMed  Google Scholar 

  15. LG Lundin (1993) ArticleTitleEvolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16 1–19 Occurrence Handle10.1006/geno.1993.1133 Occurrence Handle1:CAS:528:DyaK3sXkt1Wnsr4%3D Occurrence Handle8486346

    Article  CAS  PubMed  Google Scholar 

  16. A McLysaght K Hokamp KH Wolfe (2002) ArticleTitleExtensive genomic duplication during early chordate evolution. Nature Genet 31 200–204 Occurrence Handle10.1038/ng884 Occurrence Handle1:CAS:528:DC%2BD38XktVKgsbc%3D Occurrence Handle12032567

    Article  CAS  PubMed  Google Scholar 

  17. EW Myers GG Sutton AL Delcher IM Dew DP Fasulo MJ Flanigan SA Kravitz CM Mobarry KH Reinert KA Remington EL Anson RA Bolanos HH Chou CM Jordan AL Halpern S Lonardi EM Beasley RC Brandon L Chen PJ Dunn Z Lai Y Liang DR Nusskern M Zhan Q Zhang X Zheng GM Rubin MD Adams JC Venter (2000) ArticleTitleA whole-genome assembly of Drosophila. Science 287 2196–2204 Occurrence Handle10.1126/science.287.5461.2196 Occurrence Handle1:CAS:528:DC%2BD3cXitlSnsrg%3D Occurrence Handle10731133

    Article  CAS  PubMed  Google Scholar 

  18. R Nusse (2001) ArticleTitleAn ancient cluster of Wnt paralogues. Trends Genet 17 443 Occurrence Handle10.1016/S0168-9525(01)02349-6 Occurrence Handle1:STN:280:DC%2BD3MvksF2nsQ%3D%3D

    Article  CAS  Google Scholar 

  19. S Ohno (1999) ArticleTitleGene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin Cell Dev Biol 10 517–522 Occurrence Handle1:CAS:528:DyaK1MXnvFOmsb4%3D Occurrence Handle10597635

    CAS  PubMed  Google Scholar 

  20. B Oliver M Parisi D Clark (2002) ArticleTitleGene expression neighborhoods. J Biol 1 4 Occurrence Handle10.1186/1475-4924-1-4 Occurrence Handle12144705

    Article  PubMed  Google Scholar 

  21. MJ Pebusque F Coulier D Birnbaum P Pontarotti (1998) ArticleTitleAncient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol 15 1145–1159 Occurrence Handle1:CAS:528:DyaK1cXls1Kis7g%3D Occurrence Handle9729879

    CAS  PubMed  Google Scholar 

  22. SL Pollard PW Holland (2000) ArticleTitleEvidence for 14 homeobox gene clusters in human genome ancestry. Curr Biol 10 1059–1062

    Google Scholar 

  23. G Ramm JW Slot DE James W Stoorvogel (2000) ArticleTitleInsulin recruits GLUT4 from specialized VAMP2-carrying vesicles as well as from the dynamic endosomal/transGolgi network in rat adipocytes. Mol Biol Cell 11 4079–4091 Occurrence Handle1:CAS:528:DC%2BD3cXovFansL4%3D Occurrence Handle11102509

    CAS  PubMed  Google Scholar 

  24. VK Randhawa PJ Bilan ZA Khayat N Daneman Z Liu T Ramlal A Volchuk XR Peng T Coppola R Regazzi WS Trimble A Klip (2000) ArticleTitle VAMP2, but not VAMP3/cellubrevin, mediates insulin-dependent incorporation of GLUT4 into the plasma membrane of L6 myoblasts. Mol Biol Cell 11 2403–2417 Occurrence Handle1:CAS:528:DC%2BD3cXkvFCiur0%3D Occurrence Handle10888677

    CAS  PubMed  Google Scholar 

  25. JA Simon JW Tamkun (2002) ArticleTitleProgramming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 12 210–218 Occurrence Handle10.1016/S0959-437X(02)00288-5 Occurrence Handle1:CAS:528:DC%2BD38XhvVCnsbc%3D Occurrence Handle11893495

    Article  CAS  PubMed  Google Scholar 

  26. PT Spellman GM Rubin (2002) ArticleTitleEvidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1 5 Occurrence Handle10.1186/1475-4924-1-5 Occurrence Handle12144710

    Article  PubMed  Google Scholar 

  27. J Spring (2002) ArticleTitleGenome duplication strikes back. Nature Genet 31 128–129 Occurrence Handle1:CAS:528:DC%2BD38XktVKgsbs%3D Occurrence Handle12040374

    CAS  PubMed  Google Scholar 

  28. Z Trachtulec J Forejt (2001) ArticleTitleSynteny of orthologous genes conserved in mammals, snake, fly, nematode, and fission yeast. Mammal Genome 12 227–231 Occurrence Handle10.1007/s003350010259 Occurrence Handle1:CAS:528:DC%2BD3MXhsFSgtLo%3D

    Article  CAS  Google Scholar 

  29. Z Trachtulec RM Hamvas J Forejt HR Lehrach V Vincek J Klein (1997) ArticleTitleLinkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics 44 1–7 Occurrence Handle10.1006/geno.1997.4839 Occurrence Handle1:CAS:528:DyaK2sXlsF2itb4%3D Occurrence Handle9286694

    Article  CAS  PubMed  Google Scholar 

  30. DY Wang S Kumar SB Hedges (1999) ArticleTitleDivergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc R Soc Lond B Biol Sci 266 163–171 Occurrence Handle10.1098/rspb.1999.0617 Occurrence Handle1:CAS:528:DyaK1MXht1Gns7g%3D Occurrence Handle10097391

    Article  CAS  PubMed  Google Scholar 

  31. AG West M Gaszner G Felsenfeld (2002) ArticleTitleInsulators: Many functions, many mechanisms. Genes Dev 16 271–288 Occurrence Handle10.1101/gad.954702 Occurrence Handle11825869

    Article  PubMed  Google Scholar 

  32. DL Wheeler DM Church AE Lash DD Leipe TL Madden JU Pontius GD Schuler LM Schriml TA Tatusova L Wagner BA Rapp (2001) ArticleTitleDatabase resources of the National Center for Biotechnology Information. Nucleic Acids Res 29 11–16 Occurrence Handle10.1093/nar/29.1.11 Occurrence Handle1:CAS:528:DC%2BD3MXjtlWns7c%3D Occurrence Handle11125038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Lamas, C. Zaragoza, and V. Ley for critical reading of the manuscript and helpful suggestions. This work was supported in part by grants to B.G. (Ayudas de Investigación Serono de la Fundación Salud-2000 [Spain]) and J.R.-C. (PM1999-0103; Spanish Ministerio de Ciencia y Tecnología).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rey-Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granadino, B., Rey-Campos, J. EVG, the Remnants of a Primordial Bilaterian’s Synteny of Functionally Unrelated Genes . J Mol Evol 57, 515–519 (2003). https://doi.org/10.1007/s00239-003-2503-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2503-9

Keywords

Navigation