Skip to main content

Advertisement

Log in

Growth patterns and ratios of posterior cranial fossa structures in the Japanese pediatric population: a study utilizing CT scans

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The changes in the proportion of posterior cranial fossa structures during pediatric development remain unclear. This retrospective study aimed to investigate the growth patterns and ratios of these structures using CT scans.

Methods

Head CT scans of pediatric patients with minor head trauma from Osaka Women’s and Children’s Hospital between March 2006 and May 2023 were analyzed. The study segmented the intracranial volume (ICV), posterior cranial fossa volume (PCFV), cerebellum volume (CBMV), and brainstem volume (BSV). Correlation coefficients were calculated among the parameters. Patients aged 0 to 10 years were divided into 15 age-related clusters, and mean and standard deviation values were measured. Growth curves were created by plotting mean values sequentially. Ratios such as PCFV/ICV and (CBMV + BSV)/PCFV were examined. Statistical analyses, including unpaired t tests and logarithmic curve fitting, were performed.

Results

A total of 234 CT scans (97 from females, 115 from infants under 1 year of age) were analyzed. Positive correlations were observed among the parameters, with the strongest between PCFV and CBMV. The growth curves for ICV, PCFV, CBMV, and BSV exhibited a two-phase process, with rapid growth until approximately 4 years of age, followed by stabilization. The ratios PCFV/ICV and (CBMV + BSV)/PCFV showed increasing trends from birth onwards, stabilizing by 4 and 1 years of age, respectively.

Conclusion

This study provides insights into the growth patterns and ratios of posterior cranial fossa structures in the pediatric population. The findings demonstrate a two-phase growth process and increasing trends in the examined ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSV:

Brainstem volume

CBMV:

Cerebellum volume

CGCS:

Modified child’s Glasgow coma scales

CI:

Confidence interval

CT:

Computed tomography

DICOM:

Digital Imaging and Communications in Medicine

ICV:

Intracranial volume

m:

Month

MRI:

Magnetic resonance imaging

PCFV:

Posterior cranial fossa volume

SD:

Standard deviation

y:

Year

References

  1. Khalsa SSS, Siu A, DeFreitas TA, Cappuzzo JM, Myseros JS, Magge SN, Oluigbo CO, Keating RF (2017) Comparison of posterior fossa volumes and clinical outcomes after decompression of Chiari malformation Type I. J Neurosurg Pediatr 19:511–517. https://doi.org/10.3171/2016.11.PEDS16263

    Article  PubMed  Google Scholar 

  2. Sweeney KJ, Caird J, Sattar MT, Allcutt D, Crimmins D (2013) Spinal level of myelomeningocele lesion as a contributing factor in posterior fossa volume, intracranial cerebellar volume, and cerebellar ectopia. J Neurosurg Pediatr 11:154–159. https://doi.org/10.3171/2012.10.PEDS12177

    Article  PubMed  Google Scholar 

  3. Prassopoulos P, Cavouras D, Golfinopoulos S (1996) Developmental changes in the posterior cranial fossa of children studied by CT. Neuroradiology 38:80–83. https://doi.org/10.1007/BF00593229

    Article  CAS  PubMed  Google Scholar 

  4. Coll G, Lemaire J-J, Di Rocco F, Barthélémy I, Garcier J-M, De Schlichting E, Sakka L (2016) Human foramen magnum area and posterior cranial fossa volume growth in relation to cranial base synchondrosis closure in the course of child development. Neurosurgery 79:722–735. https://doi.org/10.1227/neu.0000000000001309

    Article  PubMed  Google Scholar 

  5. Kamdar MR, Gomez RA, Ascherman JA (2009) Intracranial volumes in a large series of healthy children. Plast Reconstr Surg 124:2072–2075. https://doi.org/10.1097/PRS.0b013e3181bcefc4

    Article  CAS  PubMed  Google Scholar 

  6. Hauptmann M, Byrnes G, Cardis E, Bernier M-O, Blettner M, Dabin J, Engels H, Istad TS, Johansen C, Kaijser M, Kjaerheim K, Journy N, Meulepas JM, Moissonnier M, Ronckers C, Thierry-Chef I, Le Cornet L, Jahnen A, Pokora R et al (2023) Brain cancer after radiation exposure from CT examinations of children and young adults: results from the EPI-CT cohort study. Lancet Oncol 24:45–53. https://doi.org/10.1016/S1470-2045(22)00655-6

    Article  PubMed  Google Scholar 

  7. Muhm M, Danko T, Henzler T, Luiz T, Winkler H, Ruffing T (2015) Pediatric trauma care with computed tomography—criteria for CT scanning. Emerg Radiol 22:613–621. https://doi.org/10.1007/s10140-015-1332-7

    Article  PubMed  Google Scholar 

  8. Astrand R, Rosenlund C, Undén J, for the Scandinavian Neurotrauma C (2016) Scandinavian guidelines for initial management of minor and moderate head trauma in children. BMC Med 14:33. https://doi.org/10.1186/s12916-016-0574-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kirkham FJ, Newton CR, Whitehouse W (2008) Paediatric coma scales. Dev Med Child Neurol 50:267–274. https://doi.org/10.1111/j.1469-8749.2008.02042.x

    Article  PubMed  Google Scholar 

  10. Hashimoto H, Maruo T, Kimoto Y, Nakamura M, Fujinaga T, Nakamura H, Ushio Y (2023) The association between diffusion-weighted imaging-Alberta Stroke Program Early Computed Tomography Score and the outcome following mechanical thrombectomy of anterior circulation occlusion. Interdiscip Neurosurg 33:101758. https://doi.org/10.1016/j.inat.2023.101758

    Article  Google Scholar 

  11. Hashimoto H, Maruo T, Kimoto Y, Nakamura M, Fujinaga T, Ushio Y (2023) Burr hole locations are associated with recurrence in single burr hole drainage surgery for chronic subdural hematoma. World Neurosurg: X 19:100204. https://doi.org/10.1016/j.wnsx.2023.100204

    Article  PubMed  Google Scholar 

  12. Gao K, Kemp DE, Ganocy SJ, Gajwani P, Xia G, Calabrese JR (2008) Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol 28:203–209. https://doi.org/10.1097/JCP.0b013e318166c4d5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hashimoto H, Takemoto O, Nishimoto K, Moriguchi G, Nakamura M, Chiba Y (2023) Normal growth curve of choroid plexus in children: implications for assessing hydrocephalus due to choroid plexus hyperplasia. J Neurosurg Pediatr:1–11. https://doi.org/10.3171/2023.7.PEDS23218

  14. Bianchi F, Benato A, Frassanito P, Tamburrini G, Massimi L (2021) Functional and morphological changes in hypoplasic posterior fossa. Childs Nerv Syst 37:3093–3104. https://doi.org/10.1007/s00381-021-05193-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rijken BFM, Lequin MH, van der Lijn F, van Veelen-Vincent M-LC, de Rooi J, Hoogendam YY, Niessen WJ, Mathijssen IMJ (2015) The role of the posterior fossa in developing Chiari I malformation in children with craniosynostosis syndromes. J Craniomaxillofac Surg 43:813–819. https://doi.org/10.1016/j.jcms.2015.04.001

    Article  PubMed  Google Scholar 

  16. Rijken BF, Lequin MH, Van Veelen M-LC, de Rooi J, Mathijssen IM (2015) The formation of the foramen magnum and its role in developing ventriculomegaly and Chiari I malformation in children with craniosynostosis syndromes. J Craniomaxillofac Surg 43:1042–1048. https://doi.org/10.1016/j.jcms.2015.04.025

    Article  PubMed  Google Scholar 

  17. Zhang CH, D'Arco F, Borghi A, Picariello S, Cheung M, Irving M, Thompson D (2023) Unravelling the pathogenesis of foramen magnum stenosis in patients with severe achondroplasia: a CT-based comparison with age-matched controls and FGFR3 craniosynostosis syndromes. Childs Nerv Syst. https://doi.org/10.1007/s00381-023-06005-z

  18. Botelho RV, Heringer LC, Botelho PB, Lopes RA, Waisberg J (2020) Posterior fossa dimensions of Chiari malformation patients compared with normal subjects: systematic review and meta-analysis. World Neurosurg 138:521-529. e522. https://doi.org/10.1016/j.wneu.2020.02.182

  19. Badie B, Mendoza D, Batzdorf U (1995) Posterior fossa volume and response to suboccipital decompression in patients with Chiari I malformation. Neurosurgery 37:214–218. https://doi.org/10.1227/00006123-199508000-00004

    Article  CAS  PubMed  Google Scholar 

  20. Trigylidas T, Baronia B, Vassilyadi M, Ventureyra E (2008) Posterior fossa dimension and volume estimates in pediatric patients with Chiari I malformations. Childs Nerv Syst 24:329–336. https://doi.org/10.1007/s00381-007-0432-4

    Article  CAS  PubMed  Google Scholar 

  21. Tubbs RS, Hill M, Loukas M, Shoja MM, Oakes WJ (2008) Volumetric analysis of the posterior cranial fossa in a family with four generations of the Chiari malformation Type I. J Neurosurg Pediatr 1:21–24. https://doi.org/10.3171/PED-08/01/021

    Article  PubMed  Google Scholar 

  22. Tubbs RS, Wellons JC III, Smyth MD, Bartolucci AA, Blount JP, Oakes WJ, Grabb PA (2003) Children with growth hormone deficiency and Chiari I malformation: a morphometric analysis of the posterior cranial fossa. Pediatr Neurosurg 38:324–328. https://doi.org/10.1159/000070416

    Article  PubMed  Google Scholar 

  23. Sgouros S, Kountouri M, Natarajan K (2006) Posterior fossa volume in children with Chiari malformation Type I. J Neurosurg Pediatr 105:101–106. https://doi.org/10.3171/ped.2006.105.2.101

    Article  Google Scholar 

  24. McLone DG, Dias MS (2003) The Chiari II malformation: cause and impact. Childs Nerv Syst 19:540–550. https://doi.org/10.1007/s00381-003-0792-3

    Article  PubMed  Google Scholar 

  25. Messing-Jünger M, Röhrig A (2013) Primary and secondary management of the Chiari II malformation in children with myelomeningocele. Childs Nerv Syst 29:1553–1562. https://doi.org/10.1007/s00381-013-2134-4

    Article  PubMed  Google Scholar 

  26. Talamonti G, Marcati E, Mastino L, Meccariello G, Picano M, D’Aliberti G (2020) Surgical management of Chiari malformation type II. Childs Nerv Syst 36:1621–1634. https://doi.org/10.1007/s00381-020-04675-7

    Article  PubMed  Google Scholar 

  27. Kim I, Hopson B, Aban I, Rizk EB, Dias MS, Bowman R, Ackerman LL, Partington MD, Castillo H, Castillo J (2018) Decompression for Chiari malformation type II in individuals with myelomeningocele in the National Spina Bifida Patient Registry. J Neurosurg Pediatr 22:652–658. https://doi.org/10.3171/2018.5.PEDS18160

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vurdem ÜE, Acer N, Ertekin T, Savranlar A (2012) Inci MF (2012) Analysis of the volumes of the posterior cranial fossa, cerebellum, and herniated tonsils using the stereological methods in patients with Chiari type I malformation. Sci World J. https://doi.org/10.1100/2012/616934

  29. Farin A, Deutsch R, Biegon A, Marshall LF (2003) Sex-related differences in patients with severe head injury: greater susceptibility to brain swelling in female patients 50 years of age and younger. J Neurosurg 98:32–36. https://doi.org/10.3171/jns.2003.98.1.0032

    Article  PubMed  Google Scholar 

  30. Coll G, Arnaud E, Collet C, Brunelle F, Sainte-Rose C, Di Rocco F (2015) Skull base morphology in fibroblast growth factor receptor type 2-related faciocraniosynostosis: a descriptive analysis. Neurosurgery 76:571–583. https://doi.org/10.1227/NEU.0000000000000676

    Article  PubMed  Google Scholar 

  31. Calandrelli R, Panfili M, D’Apolito G, Zampino G, Pedicelli A, Pilato F, Colosimo C (2017) Quantitative approach to the posterior cranial fossa and craniocervical junction in asymptomatic children with achondroplasia. Neuroradiology 59:1031–1041. https://doi.org/10.1007/s00234-017-1887-y

    Article  PubMed  Google Scholar 

  32. Tomita Y, Kameda M, Senoo T, Tokuyama E, Sugahara C, Yabuno S, Okazaki Y, Kawauchi S, Hosomoto K, Sasaki T (2022) Growth curves for intracranial volume and two-dimensional parameters for Japanese children without cranial abnormality: toward treatment of craniosynostosis. Neurol Med Chir 62:89. https://doi.org/10.2176/nmc.oa.2021-0208

    Article  Google Scholar 

  33. De Bonis P, Anile C (2020) Post-traumatic hydrocephalus: the Cinderella of neurotrauma. Expert Rev Neurother 20:643–646. https://doi.org/10.1080/14737175.2020.1779059

    Article  CAS  PubMed  Google Scholar 

  34. Khasawneh AH, Garling RJ, Harris CA (2018) Cerebrospinal fluid circulation: what do we know and how do we know it? Brain Circ 4:14. https://doi.org/10.4103/bc.bc_3_18

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hashimoto H, Khoo HM, Yanagisawa T, Tani N, Oshino S, Hirata M, Kishima H (2022) Frequency band coupling with high-frequency activities in tonic-clonic seizures shifts from θ to δ band. Clin Neurophysiol 137:122–131. https://doi.org/10.1016/j.clinph.2022.02.015

    Article  PubMed  Google Scholar 

Download references

Funding

The Japan Society for the Promotion of Science (JSPS) KAKENHI [JP21K16629 (Hiroaki Hashimoto)] supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Hashimoto.

Ethics declarations

Conflict of interest

The authors report no relevant financial or non-financial interests to disclose.

Ethical approval

The Ethics Committee of Osaka Women’s and Children’s Hospital (Izumi, Japan, approval no. 1568) provided ethical approval for this study, which was conducted in accordance with the Declaration of Helsinki guidelines for experiments involving humans.

Informed consent

Informed consent was obtained using the opt-out method from our center’s website because of the retrospective and noninvasive nature of the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Previous Presentations: This paper has not been published and is not under consideration for publication elsewhere. This paper has already been submitted to the preprint server medRxiv: https://doi.org/10.1101/2023.07.07.23292362.

Supplementary information

ESM 1

(PDF 248 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, H., Takemoto, O. & Chiba, Y. Growth patterns and ratios of posterior cranial fossa structures in the Japanese pediatric population: a study utilizing CT scans. Neuroradiology 65, 1835–1844 (2023). https://doi.org/10.1007/s00234-023-03229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03229-3

Keywords

Navigation