Skip to main content

Advertisement

Log in

Regional cortical hypoperfusion and atrophy correlate with striatal dopaminergic loss in Parkinson’s disease: a study using arterial spin labeling MR perfusion

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationship of the striatal dopamine transporter density to changes in the gray matter (GM) volume and cerebral perfusion in patients with Parkinson’s disease (PD).

Methods

We evaluated the regional cerebral blood flow (CBF) and GM volume, concurrently measured using arterial spin labeling and T1-weighted magnetic resonance imaging, respectively, as well as the striatal specific binding ratio (SBR) in 123I-N-ω-fluoropropyl-2β-carboxymethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) single-photon emission computed tomography in 30 non-demented patients with PD (15 men and 15 women; mean age, 67.2 ± 8.8 years; mean Hoehn–Yahr stage, 2.2 ± 0.9). Voxel-wise regression analyses using statistical parametric mapping (SPM) were performed to explore the brain regions that showed correlations of the striatal SBR to the GM volume and CBF, respectively, with a height threshold of p < 0.0005 at the voxel level and p < 0.05 family-wise error-corrected at the cluster level.

Results

SPM analysis showed a significant positive correlation between the SBR and GM volume in the inferior frontal gyrus (IFG). Whereas, a positive correlation between the SBR and CBF was widely found in the frontotemporal and parietotemporal regions, including the IFG. Notably, the opercular part of the IFG showed significant correlations in both SPM analyses of the GM volume (r2 = 0.90, p < 0.0001) and CBF (r2 = 0.88, p < 0.0001).

Conclusion

The voxel-wise analyses revealed the brain regions, mainly the IFG, that showed hypoperfusion and atrophy related to dopaminergic loss, which suggests that the progression of dopaminergic neurodegeneration leads to regional cortical dysfunction in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available on reasonable request.

Code availability

Not applicable.

References

  1. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

    Article  CAS  Google Scholar 

  2. Rajput AH, Voll A, Rajput ML et al (2009) Course in Parkinson disease subtypes: a 39-year clinicopathologic study. Neurology 73:206–212. https://doi.org/10.1212/WNL.0b013e3181ae7af1

    Article  CAS  Google Scholar 

  3. Fereshtehnejad SM, Romenets SR, Anang JB et al (2015) New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol 72:863–873. https://doi.org/10.1001/jamaneurol.2015.0703

    Article  Google Scholar 

  4. De Pablo-Fernández E, Lees AJ, Holton JL et al (2019) Prognosis and neuropathologic correlation of clinical subtypes of Parkinson disease. JAMA Neurol 76:470–479. https://doi.org/10.1001/jamaneurol.2018.4377

    Article  Google Scholar 

  5. Ciliax BJ, Heilman C, Demchyshyn LL et al (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15:1714–1723. https://doi.org/10.1523/jneurosci.15-03-01714.1995

    Article  CAS  Google Scholar 

  6. Booij J, Tissingh G, Boer GJ et al (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:133–140. https://doi.org/10.1136/jnnp.62.2.133

    Article  CAS  Google Scholar 

  7. Kraemmer J, Kovacs GG, Perju-Dumbrava L et al (2014) Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts. Mov Disord 29:1767–1773. https://doi.org/10.1002/mds.25975

    Article  CAS  Google Scholar 

  8. Nagano-Saito A, Washimi Y, Arahata Y et al (2005) Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 64:224–229. https://doi.org/10.1212/01.WNL.0000149510.41793.50

    Article  CAS  Google Scholar 

  9. Nishio Y, Hirayama K, Takeda A et al (2010) Corticolimbic gray matter loss in Parkinson’s disease without dementia. Eur J Neurol 17:1090–1097. https://doi.org/10.1111/j.1468-1331.2010.02980.x

    Article  CAS  Google Scholar 

  10. Guimarães RP, Santos MCA, Dagher A et al (2017) Pattern of reduced functional connectivity and structural abnormalities in Parkinson’s disease: an exploratory study. Front Neurol 7:1–9. https://doi.org/10.3389/fneur.2016.00243

    Article  Google Scholar 

  11. Eckert T, Van Laere K, Tang C et al (2007) Quantification of Parkinson’s disease-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging 34:496–501. https://doi.org/10.1007/s00259-006-0261-9

    Article  Google Scholar 

  12. Huang C, Mattis P, Tang C et al (2007) Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage 34:714–723. https://doi.org/10.1016/j.neuroimage.2006.09.003

    Article  Google Scholar 

  13. Maekawa T, Sato N, Ota M et al (2017) Correlations between dopamine transporter density measured by 123I-FP-CIT SPECT and regional gray matter volume in Parkinson’s disease. Jpn J Radiol 35:755–759. https://doi.org/10.1007/s11604-017-0694-z

    Article  CAS  Google Scholar 

  14. Choi H, Cheon GJ, Kim HJ et al (2016) Gray matter correlates of dopaminergic degeneration in Parkinson’s disease: a hybrid PET/MR study using 18F-FP-CIT. Hum Brain Mapp 37:1710–1721. https://doi.org/10.1002/hbm.23130

    Article  Google Scholar 

  15. Nobili F, Arnaldi D, Campus C et al (2011) Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson’s disease. Eur J Nucl Med Mol Imaging 38:2209–2218. https://doi.org/10.1007/s00259-011-1874-1

    Article  Google Scholar 

  16. Paschali A, Messinis L, Kargiotis O et al (2010) SPECT neuroimaging and neuropsychological functions in different stages of Parkinson’s disease. Eur J Nucl Med Mol Imaging 37:1128–1140. https://doi.org/10.1007/s00259-010-1381-9

    Article  Google Scholar 

  17. Kimura H, Kado H, Koshimoto Y et al (2005) Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO 2 PET validation. J Magn Reson Imaging 22:189–198. https://doi.org/10.1002/jmri.20382

    Article  Google Scholar 

  18. Ikawa M, Kimura H, Kitazaki Y et al (2018) Arterial spin labeling MR imaging for the clinical detection of cerebellar hypoperfusion in patients with spinocerebellar degeneration. J Neurol Sci 394:58–62. https://doi.org/10.1016/j.jns.2018.09.007

    Article  Google Scholar 

  19. Syrimi ZJ, Vojtisek L, Eliasova I et al (2017) Arterial spin labelling detects posterior cortical hypoperfusion in non-demented patients with Parkinson’s disease. J Neural Transm 124:551–557. https://doi.org/10.1007/s00702-017-1703-1

    Article  CAS  Google Scholar 

  20. Kamagata K, Motoi Y, Hori M et al (2011) Posterior hypoperfusion in parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging 33:803–807. https://doi.org/10.1002/jmri.22515

    Article  Google Scholar 

  21. Fernández-Seara MA, Mengual E, Vidorreta M et al (2012) Cortical hypoperfusion in Parkinson’s disease assessed using arterial spin labeled perfusion MRI. Neuroimage 59:2743–2750. https://doi.org/10.1016/j.neuroimage.2011.10.033

    Article  Google Scholar 

  22. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  Google Scholar 

  23. Apostolova I, Taleb DS, Lipp A et al (2017) Utility of follow-up dopamine transporter SPECT with 123I-FP-CIT in the diagnostic workup of patients with clinically uncertain Parkinsonian syndrome. Clin Nucl Med 42:589–594. https://doi.org/10.1097/RLU.0000000000001696

    Article  Google Scholar 

  24. Tomlinson CL, Stowe R, Patel S et al (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653. https://doi.org/10.1002/mds.23429

    Article  Google Scholar 

  25. Rahman MGM, Islam MM, Tsujikawa T et al (2019) Count-based method for specific binding ratio calculation in [I-123]FP-CIT SPECT analysis. Ann Nucl Med 33:14–21. https://doi.org/10.1007/s12149-018-1297-1

    Article  CAS  Google Scholar 

  26. Rahman MGM, Islam MM, Tsujikawa T, Okazawa H (2020) A novel automatic approach for calculation of the specific binding ratio in [I-123]FP-CIT SPECT. Diagnostics 10:1–11. https://doi.org/10.3390/diagnostics10050289

    Article  CAS  Google Scholar 

  27. Dai W, Garcia D, De Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497. https://doi.org/10.1002/mrm.21790

    Article  Google Scholar 

  28. Tsujikawa T, Yoneda M, Shimizu Y et al (2010) Pathophysiologic evaluation of MELAS strokes by serially quantified MRS and CASL perfusion images. Brain Dev 32:143–149. https://doi.org/10.1016/j.braindev.2008.12.003

    Article  Google Scholar 

  29. Ikawa M, Yoneda M, Muramatsu T et al (2013) Detection of preclinically latent hyperperfusion due to stroke-like episodes by arterial spin-labeling perfusion MRI in MELAS patients. Mitochondrion 13:676–680. https://doi.org/10.1016/j.mito.2013.09.007

    Article  CAS  Google Scholar 

  30. Thomas DL, Lythgoe MF, van de Weerd L et al (2006) Regional variation of cerebral blood flow and arterial transit time in normal and hyperfused rat brain measured using continuous arterial spin labelling MRI. J Cereb Blood Flow Metab 26:274–282. https://doi.org/10.1038/sj.jcbfm.9600185

    Article  Google Scholar 

  31. Herscovitch P, Raichle ME, Kilbourn MR et al (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 7:527–542. https://doi.org/10.1038/jcbfm.1987.102

    Article  CAS  Google Scholar 

  32. Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116. https://doi.org/10.1002/mrm.25197

    Article  Google Scholar 

  33. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007

    Article  Google Scholar 

  34. Isaias IU, Benti R, Cilia R et al (2007) [123I]FP-CIT striatal binding in early Parkinson’s disease patients with tremor vs. akinetic-rigid onset. NeuroReport 18:1499–1502. https://doi.org/10.1097/WNR.0b013e3282ef69f9

    Article  Google Scholar 

  35. Aron AR, Fletcher PC, Bullmore ET et al (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116. https://doi.org/10.1038/nn1003

    Article  CAS  Google Scholar 

  36. Donzuso G, Monastero R, Cicero CE et al (2021) Neuroanatomical changes in early Parkinson’s disease with mild cognitive impairment: a VBM study; the Parkinson’s Disease Cognitive Impairment Study (PaCoS). Neurol Sci 42:3723–3731. https://doi.org/10.1007/s10072-020-05034-9

    Article  Google Scholar 

  37. Gama RL, Bruin VMS, Távora DGF et al (2014) Structural brain abnormalities in patients with Parkinson’s disease with visual hallucinations: a comparative voxel-based analysis. Brain Cogn 87:97–103. https://doi.org/10.1016/j.bandc.2014.03.011

    Article  Google Scholar 

  38. Matsui H, Nishinaka K, Oda M et al (2006) Minor depression and brain perfusion images in Parkinson’s disease. Mov Disord 21:1169–1174. https://doi.org/10.1002/mds.20923

    Article  Google Scholar 

  39. Han L, Lu J, Tang Y et al (2021) Dopaminergic and metabolic correlations with cognitive domains in non-demented Parkinson’s disease. Front Aging Neurosci 13:1–10. https://doi.org/10.3389/fnagi.2021.627356

    Article  CAS  Google Scholar 

  40. Ivanidze J, Skafida M, Pandya S et al (2020) Molecular imaging of striatal dopaminergic neuronal loss and the neurovascular unit in Parkinson disease. Front Neurosci 14:1–9. https://doi.org/10.3389/fnins.2020.528809

    Article  Google Scholar 

Download references

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research (C) Grant Number 20K07900 from the Japan Society for the Promotion of Science (JSPS KAKENHI) (to M.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Ikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This retrospective case–control study was approved by the Research Ethics Committee of the University of Fukui (20170130).

Consent to participate

This retrospective case–control study was approved by the Research Ethics Committee of the University of Fukui (20170130) with a waiver of the requirement for patients’ informed consent.

Consent to publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitazaki, Y., Ikawa, M., Yamaguchi, T. et al. Regional cortical hypoperfusion and atrophy correlate with striatal dopaminergic loss in Parkinson’s disease: a study using arterial spin labeling MR perfusion. Neuroradiology 65, 569–577 (2023). https://doi.org/10.1007/s00234-022-03085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-03085-7

Keywords

Navigation