Skip to main content

Advertisement

Log in

Perfusion magnetic resonance imaging in pediatric brain tumors

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading.

Methods

Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion’s permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters.

Results

Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10-3), rCBF (p < 10-3), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10-3). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9.

Conclusions

The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koob M, Girard N (2014) Cerebral tumors: specific features in children. Diagn Interv Imaging 95:965–983. https://doi.org/10.1016/j.diii.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  2. Arvinda HR, Kesavadas C, Sarma PS, Thomas B, Radhakrishnan VV, Gupta AK, Kapilamoorthy TR, Nair S (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neuro-Oncol 94:87–96. https://doi.org/10.1007/s11060-009-9807-6

    Article  CAS  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl) 114:97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  Google Scholar 

  5. Combaz X, Girard N, Scavarda D, Chapon F, Pineau S, Levrier O, Viout P, Confort-Gouny S (2008) Imagerie des tumeurs cérébrales de l’enfant. J Neuroradiol 35:261–267. https://doi.org/10.1016/j.neurad.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Rickert C, Paulus W (2001) Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 17:503–511. https://doi.org/10.1007/s003810100496

    Article  CAS  PubMed  Google Scholar 

  7. Allen ED, Byrd SE, Darling CF, Tomita T, Wilczynski MA (1993) The clinical and radiological evaluation of primary brain neoplasms in children, part II: radiological evaluation. J Natl Med Assoc 85:546

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bjornerud A, Sorensen AG, Mouridsen K, Emblem KE (2011) T1- and T*2-dominant extravasation correction in DSC-MRI: part I—theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 31:2041–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donahue KM, Krouwer HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, Prost RW (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43:845–853

    Article  CAS  PubMed  Google Scholar 

  10. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27:859–867

    CAS  PubMed  Google Scholar 

  11. Bouzerar R, Chaarani B, Gondry-Jouet C, Zmudka J, Balédent O (2013) Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes. Neuroradiology 55:1447–1454. https://doi.org/10.1007/s00234-013-1290-2

    Article  PubMed  Google Scholar 

  12. Tzika AA, Zarifi MK, Goumnerova L, Astrakas LG, Zurakowski D, Young-Poussaint T, Anthony DC, Scott RM, Black PM (2002) Neuroimaging in pediatric brain tumors: Gd-DTPA–enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging. Am J Neuroradiol 23:322–333

    PubMed  Google Scholar 

  13. Cha S (2006) Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in pediatric patients. Neuroimaging Clin N Am 16:137–147. https://doi.org/10.1016/j.nic.2005.11.006

    Article  PubMed  Google Scholar 

  14. Ho CY, Cardinal JS, Kamer AP, Kralik SF (2015) Relative cerebral blood volume from dynamic susceptibility contrast perfusion in the grading of pediatric primary brain tumors. Neuroradiology 57:299–306. https://doi.org/10.1007/s00234-014-1478-0

    Article  PubMed  Google Scholar 

  15. Ho CY, Cardinal JS, Kamer AP, Lin C, Kralik SF (2016) Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. Am J Neuroradiol 37:544–551. https://doi.org/10.3174/ajnr.A4559

    Article  CAS  PubMed  Google Scholar 

  16. Law M, Young R, Babb J, Pollack E, Johnson G (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. Am J Neuroradiol 28:761–766

    CAS  PubMed  Google Scholar 

  17. Mangla R, Kolar B, Zhu T, Zhong J, Almast J, Ekholm S (2011) Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. Am J Neuroradiol 32:1004–1010. https://doi.org/10.3174/ajnr.A2441

    Article  CAS  PubMed  Google Scholar 

  18. Bewick V, Cheek L, Ball J (2004) Statistics review 13: receiver operating characteristic curves. Crit Care 8:508

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors 1. Radiology 249:601–613

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leu K, Boxerman JL, Ellingson BM (2017) Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the Fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas. Am J Neuroradiol 38:478–484. https://doi.org/10.3174/ajnr.A5027

    Article  CAS  PubMed  Google Scholar 

  21. Jiang J, Zhao L, Zhang Y, Zhang S, Yao Y, Qin Y, Wang C-Y, Zhu W (2014) Comparative analysis of arterial spin labeling and dynamic susceptibility contrast perfusion imaging for quantitative perfusion measurements of brain tumors. Int J Clin Exp Pathol 7:2790

    PubMed  PubMed Central  Google Scholar 

  22. Cebeci H, Aydin O, Ozturk-Isik E, Gumus C, Inecikli F, Bekar A, Kocaeli H, Hakyemez B (2014) Assesment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method. Eur J Radiol 83:1914–1919. https://doi.org/10.1016/j.ejrad.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  23. Khashbat Md D, Abe Md T, Ganbold Md M, Iwamoto Md S, Uyama Md N, Irahara Md S, Otomi Md PhD Y, Harada Md PhD M, Kageji Md PhD T, Nagahiro Md PhD S (2016) Correlation of 3D arterial spin labeling and multi-parametric dynamic susceptibility contrast perfusion MRI in brain tumors. J Med Investig JMI 63:175–181. https://doi.org/10.2152/jmi.63.175

    Article  Google Scholar 

  24. Yun TJ, Sohn C-H, Han MH, Kang H-S, Kim JE, Yoon B-W, Paeng JC, Choi SH, Kim J, Song IC, Chang K-H (2013) Effect of delayed transit time on arterial spin labeling: correlation with dynamic susceptibility contrast perfusion magnetic resonance in moyamoya disease. Investig Radiol 48:795–802. https://doi.org/10.1097/RLI.0b013e3182981137

    Article  Google Scholar 

  25. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci 89:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, Edwards MS (2014) Arterial spin-labeled perfusion of pediatric brain tumors. Am J Neuroradiol 35:395–401. https://doi.org/10.3174/ajnr.A3670

    Article  CAS  PubMed  Google Scholar 

  27. Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, Calmon R, Pagès M, Grill J, Dufour C, others (2016) Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology 281:553–566

  28. Gevers S, Van Osch MJ, Bokkers RP, Kies DA, Teeuwisse WM, Majoie CB, Hendrikse J, Nederveen AJ (2011) Intra-and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J Cereb Blood Flow Metab 31:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wintermark M, Lepori D, Cotting J, Roulet E, van Melle G, Meuli R, Maeder P, Regli L, Verdun FR, Deonna T, others (2004) Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography. Pediatrics 113:1642–1652

  30. Van Gelderen P, de Zwart JA, Duyn JH (2008) Pitfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 59:788–795. https://doi.org/10.1002/mrm.21515

    Article  PubMed  Google Scholar 

  31. Boxerman JL, Paulson ES, Prah MA, Schmainda KM (2013) The effect of pulse sequence parameters and contrast agent dose on percentage signal recovery in DSC-MRI: implications for clinical applications. Am J Neuroradiol 34:1364–1369. https://doi.org/10.3174/ajnr.A3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lupo JM, Cha S, Chang SM, Nelson SJ (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. Am J Neuroradiol 26:1446–1454

    PubMed  Google Scholar 

  33. Kassner A, Annesley DJ, Zhu XP, Li KL, Kamaly-Asl ID, Watson Y, Jackson A (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging JMRI 11:103–113

    Article  CAS  PubMed  Google Scholar 

  34. Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, Hinkka S, Metsahonkala L, Scheinin H (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613

    Article  CAS  PubMed  Google Scholar 

  35. Murat I, Dubois M-C, Piat V (1995) Le sévoflurane. Ann Francaises Anesth Réanimation 14:489–501

    Article  CAS  Google Scholar 

  36. Laswad T, Wintermark P, Alamo L, Moessinger A, Meuli R, Gudinchet F (2009) Method for performing cerebral perfusion-weighted MRI in neonates. Pediatr Radiol 39:260–264. https://doi.org/10.1007/s00247-008-1081-9

    Article  PubMed  Google Scholar 

  37. Tanner SF, Cornette L, Ramenghi LA, Miall LS, Ridgway JP, Smith MA, Levene MI (2003) Cerebral perfusion in infants and neonates: preliminary results obtained using dynamic susceptibility contrast enhanced magnetic resonance imaging. Arch Fetal Neonatal 88:F525–F530. https://doi.org/10.1136/fn.88.6.F525

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dallery.

Ethics declarations

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of retrospective study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallery, F., Bouzerar, R., Michel, D. et al. Perfusion magnetic resonance imaging in pediatric brain tumors. Neuroradiology 59, 1143–1153 (2017). https://doi.org/10.1007/s00234-017-1917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1917-9

Keywords

Navigation