Skip to main content

Advertisement

Log in

A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The emergence of advanced in vivo neuroimaging methods has redefined the understanding of brain function with a shift from traditional localizationist models to more complex and widely distributed neural networks. In human language processing, the traditional localizationist models of Wernicke and Broca have fallen out of favor for a dual-stream processing system involving complex networks organized over vast areas of the dominant hemisphere. The current review explores the cortical function and white matter connections of human language processing, as well as their relevance to surgical planning.

Methods

We performed a systematic review of the literature with narrative data analysis.

Results

Although there is significant heterogeneity in the literature over the past century of exploration, modern evidence provides new insight into the true cortical function and white matter anatomy of human language. Intraoperative data and postoperative outcome studies confirm a widely distributed language network extending far beyond the traditional cortical areas of Wernicke and Broca.

Conclusions

The anatomic distribution of language networks, based on current theories, is explored to present a modern and clinically relevant interpretation of language function. Within this framework, we present current knowledge regarding the known effects of damage to both cortical and subcortical components of these language networks. Ideally, we hope this framework will provide a common language for which to base future clinical studies in human language function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AF:

arcuate fasciculus

AG:

angular gyrus

BA:

Brodmann Area

BTLA:

basal temporal language area

DES:

Direct electrical stimulation

DLPFC:

dorsolateral prefrontal cortex

DMPFC:

dorsomedial prefrontal cortex

dPMC:

dorsal premotor cortex

dSMC:

dorsal sensorimotor cortex

FAT:

frontal aslant tract

FST:

frontostriatal tract

IFG:

inferior frontal gyrus

IFOF:

inferior fronto-occipital fasciculus

ILF:

inferior longitudinal fasciculus

ITG:

inferior temporal gyrus

MdLF:

middle longitudinal fasciculus

MTG:

middle temporal gyrus

pOp:

pars opercularis

pOrb:

pars orbitalis

pTri:

pars triangularis

SLF:

superior longitudinal fasciculus

SMA:

supplementary motor area

SMG:

supramarginal gyrus

STG:

superior temporal gyrus

TP:

temporal pole

UF:

uncinate fasciculus

VOF:

vertical occipital fasciculus

vPMC:

ventral premotor cortex

vSMC:

ventral sensorimotor cortex;

VWFA:

visual word form area

References

  1. Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122:250–261. doi:10.3171/2014.10.JNS132647

    Article  PubMed  Google Scholar 

  2. Binder JR (2015) The Wernicke area: modern evidence and a reinterpretation. Neurology 85:2170–2175. doi:10.1212/WNL.0000000000002219

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical Organization of Semantic Processing. Annu Rev Neurosci 25:151–188. doi:10.1146/annurev.neuro.25.112701.142946

    Article  CAS  PubMed  Google Scholar 

  4. Duffau H, Moritz-Gasser S, Mandonnet E (2014) A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 131:1–10. doi:10.1016/j.bandl.2013.05.011

    Article  PubMed  Google Scholar 

  5. Duffau H (2015) Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol 11:255–265. doi:10.1038/nrneurol.2015.51

    Article  PubMed  Google Scholar 

  6. Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H (2011) Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. NeuroImage 56:992–1000. doi:10.1016/j.neuroimage.2011.03.022

    Article  PubMed  Google Scholar 

  7. Hickok G, Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99. doi:10.1016/j.cognition.2003.10.011

    Article  PubMed  Google Scholar 

  8. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402. doi:10.1038/nrn2113

    Article  CAS  PubMed  Google Scholar 

  9. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682. doi:10.1073/pnas.98.2.676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796. doi:10.1093/cercor/bhp055

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karunanayaka PR, Holland SK, Schmithorst VJ, Solodkin A, Chen EE, Szaflarski JP, Plante E (2007) Age-related connectivity changes in fMRI data from children listening to stories. NeuroImage 34:349–360. doi:10.1016/j.neuroimage.2006.08.028

    Article  PubMed  Google Scholar 

  12. Schmithorst VJ, Holland SK, Plante E (2006) Cognitive modules utilized for narrative comprehension in children: a functional magnetic resonance imaging study. NeuroImage 29:254–266. doi:10.1016/j.neuroimage.2005.07.020

    Article  PubMed  Google Scholar 

  13. Nenert R, Allendorfer JB, Szaflarski JP (2014) A model for visual memory encoding. PLoS One 9:e107761. doi:10.1371/journal.pone.0107761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F, Goense J, Oeltermann A, Merkle H (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291. doi:10.1038/nn.2631

    Article  CAS  PubMed  Google Scholar 

  15. Brennan NP, Peck KK, Holodny A (2016) Language mapping using fMRI and direct cortical stimulation for brain tumor surgery: the good, the bad, and the questionable. Top Magn Reson Imaging 25:1–10. doi:10.1097/rmr.0000000000000074

    Article  PubMed  Google Scholar 

  16. Klein AP, Sabsevitz DS, Ulmer JL, Mark LP (2015) Imaging of cortical and white matter language processing. Semin Ultrasound CT MRI 36:249–259. doi:10.1053/j.sult.2015.05.011

    Article  Google Scholar 

  17. Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL Jr (2016) Fiber tracts of the dorsal language stream in the human brain. J Neurosurg 124:1396–1405. doi:10.3171/2015.5.JNS15455

    Article  PubMed  Google Scholar 

  18. Devlin JT, Matthews PM, Rushworth MFS (2003) Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 15:71–84. doi:10.1162/089892903321107837

    Article  PubMed  Google Scholar 

  19. Rolston JD, Englot DJ, Benet A, Li J, Cha S, Berger MS (2015) Frontal operculum gliomas: language outcome following resection. J Neurosurg 122:725–734. doi:10.3171/2014.11.JNS132172

    Article  PubMed  Google Scholar 

  20. Fargo JD, Schefft BK, Dulay MF, Privitera MD, Yeh H-S (2005) Confrontation naming in individuals with temporal lobe epilepsy: a quantitative analysis of paraphasic error subtypes. Neuropsychology 19:603–611. doi:10.1037/0894-4105.19.5.603

    Article  PubMed  Google Scholar 

  21. Klein E (2015) Eloquent brain, ethical challenges: functional brain mapping in neurosurgery. Semin Ultrasound CT MRI 36:291–295. doi:10.1053/j.sult.2015.05.009

    Article  Google Scholar 

  22. Mandonnet E, Sarubbo S, Duffau H (2016) Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurg Rev. doi:10.1007/s10143-016-0723-x

    Google Scholar 

  23. Duffau H (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128:797–810. doi:10.1093/brain/awh423

    Article  PubMed  Google Scholar 

  24. Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2015) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220:3399–3412. doi:10.1007/s00429-014-0863-0

    Article  PubMed  Google Scholar 

  25. Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, Mazoyer B, Tzourio-Mazoyer N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. NeuroImage 30:1414–1432. doi:10.1016/j.neuroimage.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  26. Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Tsuzuki S, Konishi Y, Kamata K, Kinno R, Sakai KL, Iseki H, Kawamata T (2016) Difficulty in identification of the frontal language area in patients with dominant frontal gliomas that involve the pars triangularis. J Neurosurg 125:803–811. doi:10.3171/2015.8.jns151204

    Article  PubMed  Google Scholar 

  27. Tate MC, Herbet G, Moritz-Gasser S, Tate JE, Duffau H (2014) Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 137:2773–2782. doi:10.1093/brain/awu168

    Article  PubMed  Google Scholar 

  28. Chang EF, Breshears JD, Raygor KP, Lau D, Molinaro AM, Berger MS (2016) Stereotactic probability and variability of speech arrest and anomia sites during stimulation mapping of the language dominant hemisphere. J Neurosurg:1–8. doi:10.3171/2015.10.jns151087

  29. Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71:316–326. doi:10.3171/jns.1989.71.3.0316

    Article  CAS  PubMed  Google Scholar 

  30. Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Barbareschi M, Dallabona M, Chioffi F, Duffau H (2016) Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation: anatomo-functional integration of language. Hum Brain Mapp. doi:10.1002/hbm.23281

    Google Scholar 

  31. Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478–484. doi:10.1006/nimg.2000.0635

    Article  CAS  PubMed  Google Scholar 

  32. Grabowski TJ, Damasio H, Damasio AR (1998) Premotor and prefrontal correlates of category-related lexical retrieval. NeuroImage 7:232–243. doi:10.1006/nimg.1998.0324

    Article  CAS  PubMed  Google Scholar 

  33. Grafton ST, Fadiga L, Arbib MA, Rizzolatti G (1997) Premotor cortex activation during observation and naming of familiar tools. NeuroImage 6:231–236. doi:10.1006/nimg.1997.0293

    Article  CAS  PubMed  Google Scholar 

  34. Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, Sichez JP, Van Effenterre R (2003) The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. NeuroImage 20:1903–1914. doi:10.1016/S1053-8119(03)00203-9

    Article  PubMed  Google Scholar 

  35. Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358:18–27. doi:10.1056/NEJMoa067819

    Article  CAS  PubMed  Google Scholar 

  36. Plaza M, Gatignol P, Cohen H, Berger B, Duffau H (2008) A discrete area within the left dorsolateral prefrontal cortex involved in visual-verbal incongruence judgment. Cereb Cortex 18:1253–1259. doi:10.1093/cercor/bhm169

    Article  PubMed  Google Scholar 

  37. Kho KH, Rutten G-JM, Leijten FSS, van der Schaaf A, van Rijen PC, Ramsey NF (2007) Working memory deficits after resection of the dorsolateral prefrontal cortex predicted by functional magnetic resonance imaging and electrocortical stimulation mapping: case report. J Neurosurg Pediatr 106:501–505. doi:10.3171/ped.2007.106.6.501

    Article  Google Scholar 

  38. Noonan KA, Jefferies E, Visser M, Lambon Ralph MA (2013) Going beyond inferior prefrontal involvement in semantic control: evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. J Cogn Neurosci 25:1824–1850. doi:10.1162/jocn_a_00442

    Article  PubMed  Google Scholar 

  39. Bozkurt B, Yagmurlu K, Middlebrooks EH, Karadag A, Ovalioglu TC, Jagadeesan B, Sandhu G, Tanriover N, Grande AW (2016) The microsurgical and tractographic anatomy of the supplementary motor area complex in human. World Neurosurg 95:99–107. doi:10.1016/j.wneu.2016.07.072

    Article  PubMed  Google Scholar 

  40. Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130:1432–1441. doi:10.1093/brain/awm042

    Article  CAS  PubMed  Google Scholar 

  41. Benzagmout M, Gatignol P, Duffau H (2007) Resection of World Health Organization grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery 61:741–752 . doi:10.1227/01.NEU.0000298902.69473.77discussion 752–753

    Article  PubMed  Google Scholar 

  42. Duffau H (2016) A two-level model of interindividual anatomo-functional variability of the brain and its implications for neurosurgery. Cortex. doi:10.1016/j.cortex.2015.12.009

    PubMed  Google Scholar 

  43. Fujii M, Maesawa S, Ishiai S, Iwami K, Futamura M, Saito K (2016) Neural basis of language: an overview of an evolving model. Neurol Med Chir Tokyo 56:379–386. doi:10.2176/nmc.ra.2016-0014

    Article  PubMed  PubMed Central  Google Scholar 

  44. Goucha T, Friederici AD (2015) The language skeleton after dissecting meaning: a functional segregation within Broca’s area. NeuroImage 114:294–302. doi:10.1016/j.neuroimage.2015.04.011

    Article  PubMed  Google Scholar 

  45. Duffau H (2008) The anatomo-functional connectivity of language revisited. Neuropsychologia 46:927–934. doi:10.1016/j.neuropsychologia.2007.10.025

    Article  PubMed  Google Scholar 

  46. Corina DP, McBurney SL, Dodrill C, Hinshaw K, Brinkley J, Ojemann G (1999) Functional roles of Broca’s area and SMG: evidence from cortical stimulation mapping in a deaf signer. NeuroImage 10:570–581. doi:10.1006/nimg.1999.0499

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Lu J, Zhang H, Zhang J, Mao Y, Zhou L (2015) Probabilistic map of language regions: challenge and implication. Brain 138:e337–e337. doi:10.1093/brain/awu247

    Article  PubMed  Google Scholar 

  48. van Geemen K, Herbet G, Moritz-Gasser S, Duffau H (2014) Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence from intraoperative awake mapping in glioma patients: ventral premotor cortex and speech. Hum Brain Mapp 35:1587–1596. doi:10.1002/hbm.22275

    Article  PubMed  Google Scholar 

  49. Bizzi A, Nava S, Ferrè F, Castelli G, Aquino D, Ciaraffa F, Broggi G, DiMeco F, Piacentini S (2012) Aphasia induced by gliomas growing in the ventrolateral frontal region: assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex J Devoted Study Nerv Syst Behav 48:255–272. doi:10.1016/j.cortex.2011.11.015

    Article  Google Scholar 

  50. Oh A, Duerden EG, Pang EW (2014) The role of the insula in speech and language processing. Brain Lang 135:96–103. doi:10.1016/j.bandl.2014.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eickhoff SB, Heim S, Zilles K, Amunts K (2009) A systems perspective on the effective connectivity of overt speech production. Philos Trans R Soc Math Phys Eng Sci 367:2399–2421. doi:10.1098/rsta.2008.0287

    Article  Google Scholar 

  52. Jakab A, Molnár PP, Bogner P, Béres M, Berényi EL (2012) Connectivity-based parcellation reveals interhemispheric differences in the insula. Brain Topogr 25:264–271. doi:10.1007/s10548-011-0205-y

    Article  PubMed  Google Scholar 

  53. Makris N, Pandya DN (2009) The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct 213:343–358. doi:10.1007/s00429-008-0199-8

    Article  PubMed  Google Scholar 

  54. Dronkers NF (1996) A new brain region for coordinating speech articulation. Nature 384:159–161. doi:10.1038/384159a0

    Article  CAS  PubMed  Google Scholar 

  55. Baldo JV, Wilkins DP, Ogar J, Willock S, Dronkers NF (2011) Role of the precentral gyrus of the insula in complex articulation. Cortex J Devoted Study Nerv Syst Behav 47:800–807. doi:10.1016/j.cortex.2010.07.001

    Article  Google Scholar 

  56. Bouchard KE, Mesgarani N, Johnson K, Chang EF (2013) Functional organization of human sensorimotor cortex for speech articulation. Nature 495:327–332. doi:10.1038/nature11911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Breshears JD, Molinaro AM, Chang EF (2015) A probabilistic map of the human ventral sensorimotor cortex using electrical stimulation. J Neurosurg 123:340–349. doi:10.3171/2014.11.JNS14889

    Article  PubMed  Google Scholar 

  58. Conant D, Bouchard KE, Chang EF (2014) Speech map in the human ventral sensory-motor cortex. Curr Opin Neurobiol 24:63–67. doi:10.1016/j.conb.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  59. Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:663–672. doi:10.1016/S0959-4388(01)00266-5

    Article  CAS  PubMed  Google Scholar 

  60. Vergani F, Lacerda L, Martino J, Attems J, Morris C, Mitchell P, Thiebaut de Schotten M, Dell’Acqua F (2014) White matter connections of the supplementary motor area in humans. J Neurol Neurosurg Psychiatry 85:1377–1385. doi:10.1136/jnnp-2013-307492

    Article  PubMed  Google Scholar 

  61. Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362

    CAS  PubMed  Google Scholar 

  62. Broce I, Bernal B, Altman N, Tremblay P, Dick AS (2015) Fiber tracking of the frontal aslant tract and subcomponents of the arcuate fasciculus in 5–8-year-olds: relation to speech and language function. Brain Lang 149:66–76. doi:10.1016/j.bandl.2015.06.006

    Article  PubMed  Google Scholar 

  63. Rostomily RC, Berger MS, Ojemann GA, Lettich E (1991) Postoperative deficits and functional recovery following removal of tumors involving the dominant hemisphere supplementary motor area. J Neurosurg 75:62–68. doi:10.3171/jns.1991.75.1.0062

    Article  CAS  PubMed  Google Scholar 

  64. Rosenberg K, Nossek E, Liebling R, Fried I, Shapira-Lichter I, Hendler T, Ram Z (2010) Prediction of neurological deficits and recovery after surgery in the supplementary motor area: a prospective study in 26 patients: clinical article. J Neurosurg 113:1152–1163. doi:10.3171/2010.6.JNS1090

    Article  PubMed  Google Scholar 

  65. Nelson L, Lapsiwala S, Haughton VM, Noyes J, Sadrzadeh AH, Moritz CH, Meyerand ME, Badie B (2002) Preoperative mapping of the supplementary motor area in patients harboring tumors in the medial frontal lobe. J Neurosurg 97:1108–1114. doi:10.3171/jns.2002.97.5.1108

    Article  PubMed  Google Scholar 

  66. Friederici AD (2015) White-matter pathways for speech and language processing. Handb Clin Neurol 129:177–186. doi:10.1016/B978-0-444-62630-1.00010-X

    Article  PubMed  Google Scholar 

  67. Dronkers NF, Wilkins DP, Van Valin RD, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177. doi:10.1016/j.cognition.2003.11.002

    Article  PubMed  Google Scholar 

  68. Privitera M, Kim KK (2010) Postictal language function. Epilepsy Behav 19:140–145. doi:10.1016/j.yebeh.2010.06.028

    Article  PubMed  Google Scholar 

  69. Corina DP, Loudermilk BC, Detwiler L, Martin RF, Brinkley JF, Ojemann G (2010) Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang 115:101–112. doi:10.1016/j.bandl.2010.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilson SM, Lam D, Babiak MC, Perry DW, Shih T, Hess CP, Berger MS, Chang EF (2015) Transient aphasias after left hemisphere resective surgery. J Neurosurg 123:581–593. doi:10.3171/2015.4.JNS141962

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ardila A, Bernal B, Rosselli M (2016) How extended is Wernicke’s area? Meta-analytic connectivity study of BA20 and integrative proposal. Neurosci J 2016:1–6. doi:10.1155/2016/4962562

    Article  Google Scholar 

  72. Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM (2008) Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia 49:1377–1394. doi:10.1111/j.1528-1167.2008.01625.x

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris GL, Mueller WM, Binder JR (2003) Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 60:1788–1792

    Article  CAS  PubMed  Google Scholar 

  74. Bi Y, Wei T, Wu C, Han Z, Jiang T, Caramazza A (2011) The role of the left anterior temporal lobe in language processing revisited: evidence from an individual with ATL resection. Cortex 47:575–587. doi:10.1016/j.cortex.2009.12.002

    Article  PubMed  Google Scholar 

  75. Binder JR, Gross WL, Allendorfer JB, Bonilha L, Chapin J, Edwards JC, Grabowski TJ, Langfitt JT, Loring DW, Lowe MJ, Koenig K, Morgan PS, Ojemann JG, Rorden C, Szaflarski JP, Tivarus ME, Weaver KE (2011) Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. NeuroImage 54:1465–1475. doi:10.1016/j.neuroimage.2010.09.048

    Article  PubMed  Google Scholar 

  76. Barnett A, Marty-Dugas J, McAndrews MP (2014) Advantages of sentence-level fMRI language tasks in presurgical language mapping for temporal lobe epilepsy. Epilepsy Behav 32:114–120. doi:10.1016/j.yebeh.2014.01.010

    Article  PubMed  Google Scholar 

  77. Papagno C, Casarotti A, Comi A, Pisoni A, Lucchelli F, Bizzi A, Riva M, Bello L (2016) Long-term proper name anomia after removal of the uncinate fasciculus. Brain Struct Funct 221:687–694. doi:10.1007/s00429-014-0920-8

    Article  PubMed  Google Scholar 

  78. Ostrowsky K, Desestret V, Ryvlin P, Coste S, Mauguière F (2002) Direct electrical stimulations of the temporal pole in human. Epileptic Disord 4(Suppl 1):S23–S27

    PubMed  Google Scholar 

  79. Iaccarino L, Crespi C, Della Rosa PA, Catricalà E, Guidi L, Marcone A, Tagliavini F, Magnani G, Cappa SF, Perani D (2015) The semantic variant of primary progressive aphasia: clinical and neuroimaging evidence in single subjects. PLoS One 10:e0120197. doi:10.1371/journal.pone.0120197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Upadhyay J, Silver A, Knaus TA, Lindgren KA, Ducros M, Kim D-S, Tager-Flusberg H (2008) Effective and structural connectivity in the human auditory cortex. J Neurosci 28:3341–3349. doi:10.1523/JNEUROSCI.4434-07.2008

    Article  CAS  PubMed  Google Scholar 

  81. Leonard MK, Chang EF (2014) Dynamic speech representations in the human temporal lobe. Trends Cogn Sci 18:472–479. doi:10.1016/j.tics.2014.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM, Knight RT (2010) Categorical speech representation in human superior temporal gyrus. Nat Neurosci 13:1428–1432. doi:10.1038/nn.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mesgarani N, Cheung C, Johnson K, Chang EF (2014) Phonetic feature encoding in human superior temporal gyrus. Science 343:1006–1010. doi:10.1126/science.1245994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Poeppel D (2001) Pure word deafness and the bilateral processing of the speech code. Cogn Sci 25:679–693. doi:10.1207/s15516709cog2505_3

    Article  Google Scholar 

  85. Quigg M, Fountain NB (1999) Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. J Neurol Neurosurg Psychiatry 66:393–396. doi:10.1136/jnnp.66.3.393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Purcell JJ, Shea J, Rapp B (2014) Beyond the visual word form area: the orthography–semantics interface in spelling and reading. Cogn Neuropsychol 31:482–510. doi:10.1080/02643294.2014.909399

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lopes R, Nunes RG, Simões MR, Secca MF, Leal A (2015) The visual word form area remains in the dominant hemisphere for language in late-onset left occipital lobe epilepsies: a postsurgery analysis of two cases. Epilepsy Behav 46:91–98. doi:10.1016/j.yebeh.2015.04.019

    Article  PubMed  Google Scholar 

  88. Price CJ, Devlin JT (2003) The myth of the visual word form area. NeuroImage 19:473–481. doi:10.1016/S1053-8119(03)00084-3

    Article  PubMed  Google Scholar 

  89. Hirshorn EA, Li Y, Ward MJ, Richardson RM, Fiez JA, Ghuman AS (2016) Decoding and disrupting left midfusiform gyrus activity during word reading. Proc Natl Acad Sci 113:8162–8167. doi:10.1073/pnas.1604126113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lüders H, Lesser RP, Hahn J, Dinner DS, Morris HH, Wyllie E, Godoy J (1991) Basal temporal language area. Brain 114:743–754. doi:10.1093/brain/114.2.743

    Article  PubMed  Google Scholar 

  91. Abou-Khalil R, Wertz RT, Abou-Khalil BW, Welch LW, Blumenkopf B (1996) Basal temporal language area: evidence from cortical stimulation and surgical ablation. In: Lemme ML (ed) Clinical Aphasiology, vol 24. PRO-ED, Austin, pp. 173–180

    Google Scholar 

  92. Mani J, Diehl B, Piao Z, Schuele SS, LaPresto E, Liu P, Nair DR, Dinner DS, Luders HO (2008) Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia. Neurology 71:1621–1627. doi:10.1212/01.wnl.0000334755.32850.f0

    Article  CAS  PubMed  Google Scholar 

  93. Roux F-E, Boetto S, Sacko O, Chollet F, Trémoulet M (2003) Writing, calculating, and finger recognition in the region of the angular gyrus: a cortical stimulation study of Gerstmann syndrome. J Neurosurg 99:716–727. doi:10.3171/jns.2003.99.4.0716

    Article  PubMed  Google Scholar 

  94. Maldonado IL, Moritz-Gasser S, de Champfleur NM, Bertram L, Moulinié G, Duffau H (2011) Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients: clinical article. J Neurosurg 115:770–779. doi:10.3171/2011.5.JNS112

    Article  PubMed  Google Scholar 

  95. Frank LR (2001) Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45:935–939. doi:10.1002/mrm.1125

    Article  CAS  PubMed  Google Scholar 

  96. Weeden VJ, Reese TG, Tuch DS, Weigel MR, Dou JG, Weiskoff RM, Chessler D (2000) Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. Proc Intl Soc Mag Reson Med. Eighth Annual Meeting. Berkeley, CA. http://cds.ismrm.org/ismrm-2000/PDF1/0082.pdf

  97. Lu H, Jensen JH, Ramani A, Helpern JA (2006) Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 19:236–247. doi:10.1002/nbm.1020

    Article  PubMed  Google Scholar 

  98. Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471. doi:10.3171/JNS/2008/109/9/0461

    Article  PubMed  Google Scholar 

  99. Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M, Chiras J, Lehéricy S (2010) Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations: clinical article. J Neurosurg 112:503–511. doi:10.3171/2009.8.JNS09558

    Article  PubMed  Google Scholar 

  100. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869. doi:10.1093/cercor/bhh186

    Article  PubMed  Google Scholar 

  101. Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM, Duffau H (2013) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121. doi:10.1007/s00429-012-0386-5

    Article  PubMed  Google Scholar 

  102. Baydin S, Gungor A, Tanriover N, Baran O, Middlebrooks EH, Rhoton AL (2016) Fiber tracts of the medial and inferior surfaces of the cerebrum. World Neurosurg. doi:10.1016/j.wneu.2016.05.016

    PubMed  Google Scholar 

  103. Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL (2016) The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg 1–27. doi:10.3171/2016.1.JNS152082

  104. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246. doi:10.1038/nn.2905

    Article  CAS  PubMed  Google Scholar 

  105. De Benedictis A, Duffau H, Paradiso B, Grandi E, Balbi S, Granieri E, Colarusso E, Chioffi F, Marras CE, Sarubbo S (2014) Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective. J Anat 225:132–151. doi:10.1111/joa.12204

    Article  PubMed  PubMed Central  Google Scholar 

  106. Duffau H, Gatignol P, Moritz-Gasser S, Mandonnet E (2009) Is the left uncinate fasciculus essential for language?: a cerebral stimulation study. J Neurol 256:382–389. doi:10.1007/s00415-009-0053-9

    Article  PubMed  Google Scholar 

  107. Almairac F, Herbet G, Moritz-Gasser S, de Champfleur NM, Duffau H (2015) The left inferior fronto-occipital fasciculus subserves language semantics: a multilevel lesion study. Brain Struct Funct 220:1983–1995. doi:10.1007/s00429-014-0773-1

    Article  PubMed  Google Scholar 

  108. Vassal F, Schneider F, Boutet C, Jean B, Sontheimer A, Lemaire J-J (2016) Combined DTI tractography and functional MRI study of the language Connectome in healthy volunteers: extensive mapping of white matter fascicles and cortical activations. PLoS One 11:e0152614. doi:10.1371/journal.pone.0152614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Fernández-Miranda JC, Rhoton AL, Kakizawa Y, Choi C, Álvarez-Linera J (2008) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study: laboratory investigation. J Neurosurg 108:764–774. doi:10.3171/JNS/2008/108/4/0764

    Article  PubMed  Google Scholar 

  110. Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46:691–699. doi:10.1016/j.cortex.2009.07.015

    Article  PubMed  Google Scholar 

  111. Duffau H, Herbet G, Moritz-Gasser S (2013) Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients. Front Syst Neurosci 7:44. doi:10.3389/fnsys.2013.00044

    Article  PubMed  PubMed Central  Google Scholar 

  112. Moritz-Gasser S, Duffau H (2013) The anatomo-functional connectivity of word repetition: insights provided by awake brain tumor surgery. Front Hum Neurosci 7:405. doi:10.3389/fnhum.2013.00405

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653. doi:10.1093/brain/awl359

    Article  PubMed  Google Scholar 

  114. Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H (2007) Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain 130:623–629. doi:10.1093/brain/awl361

    Article  PubMed  Google Scholar 

  115. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107. doi:10.1093/brain/awg203

    Article  PubMed  Google Scholar 

  116. Zemmoura I, Herbet G, Moritz-Gasser S, Duffau H (2015) New insights into the neural network mediating reading processes provided by cortico-subcortical electrical mapping: neural basis of reading. Hum Brain Mapp 36:2215–2230. doi:10.1002/hbm.22766

    Article  PubMed  Google Scholar 

  117. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136:1692–1707. doi:10.1093/brain/awt094

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, Fernandez-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh F-C (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23:2347–2356. doi:10.1093/cercor/bhs225

    Article  PubMed  Google Scholar 

  119. Makris N, Preti MG, Wassermann D, Rathi Y, Papadimitriou GM, Yergatian C, Dickerson BC, Shenton ME, Kubicki M (2013) Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 7:335–352. doi:10.1007/s11682-013-9235-2

    Article  CAS  PubMed  Google Scholar 

  120. Makris N, Preti MG, Asami T, Pelavin P, Campbell B, Papadimitriou GM, Kaiser J, Baselli G, Westin CF, Shenton ME, Kubicki M (2013) Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct 218:951–968. doi:10.1007/s00429-012-0441-2

    Article  CAS  PubMed  Google Scholar 

  121. Maldonado IL, de Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H (2013) Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat 223:38–45. doi:10.1111/joa.12055

    Article  PubMed  PubMed Central  Google Scholar 

  122. De Witt Hamer PC, Moritz-Gasser S, Gatignol P, Duffau H (2011) Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp 32:962–973. doi:10.1002/hbm.21082

    Article  PubMed  Google Scholar 

  123. Keser Z, Ucisik-Keser FE, Hasan KM (2016) Quantitative mapping of human brain vertical-occipital fasciculus: qMapping of human VOF. J Neuroimaging 26:188–193. doi:10.1111/jon.12268

    Article  PubMed  Google Scholar 

  124. Yeatman JD, Rauschecker AM, Wandell BA (2013) Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections. Brain Lang 125:146–155. doi:10.1016/j.bandl.2012.04.010

    Article  PubMed  Google Scholar 

  125. Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F (2016) A major human white matter pathway between dorsal and ventral visual cortex. Cereb Cortex 26:2205–2214. doi:10.1093/cercor/bhv064

    Article  PubMed  Google Scholar 

  126. Weiner KS, Yeatman JD, Wandell BA (2016) The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex. doi:10.1016/j.cortex.2016.03.012

    PubMed  Google Scholar 

  127. Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci 111:E5214–E5223. doi:10.1073/pnas.1418503111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Greenblatt SH (1973) Alexia without agraphia or hemianopsia. Anatomical analysis of an autopsied case. Brain 96:307–316

    Article  CAS  PubMed  Google Scholar 

  129. Greenblatt SH (1976) Subangular alexia without agraphia or hemianopsia. Brain Lang 3:229–245

    Article  CAS  PubMed  Google Scholar 

  130. Ford A, McGregor KM, Case K, Crosson B, White KD (2010) Structural connectivity of Broca’s area and medial frontal cortex. NeuroImage 52:1230–1237. doi:10.1016/j.neuroimage.2010.05.018

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kinoshita M, Shinohara H, Hori O, Ozaki N, Ueda F, Nakada M, Hamada J, Hayashi Y (2012) Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy: clinical article. J Neurosurg 116:323–330. doi:10.3171/2011.10.JNS11434

    Article  PubMed  Google Scholar 

  132. Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, Thompson CK, Thiebaut de Schotten M, Dell’Acqua F, Weintraub S, Rogalski E (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136:2619–2628. doi:10.1093/brain/awt163

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kemerdere R, de Champfleur NM, Deverdun J, Cochereau J, Moritz-Gasser S, Herbet G, Duffau H (2016) Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol 263:157–167. doi:10.1007/s00415-015-7949-3

    Article  PubMed  Google Scholar 

  134. Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML (1989) Severe nonfluency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain 112:1–38. doi:10.1093/brain/112.1.1

    Article  PubMed  Google Scholar 

  135. Robles SG (2005) The role of dominant striatum in language: a study using intraoperative electrical stimulations. J Neurol Neurosurg Psychiatry 76:940–946. doi:10.1136/jnnp.2004.045948

    Article  PubMed Central  Google Scholar 

  136. Henry RG, Berman JI, Nagarajan SS, Mukherjee P, Berger MS (2004) Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. NeuroImage 21:616–622. doi:10.1016/j.neuroimage.2003.09.047

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are forever indebted to the late Albert L. Rhoton, Jr. MD, whose guidance and contributions made this work possible. His impact on medicine, those he treated and those he educated will never be forgotten.

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik H. Middlebrooks.

Ethics declarations

We declare that this manuscript does not contain clinical studies or patient data.

Conflict of interest

We declare that we have no conflict of interest.

Electronic supplementary material

Supp Fig 1

The complex course of the inferior fronto-occipital fasciculus (IFOF) is further illustrated in a series of axial (top row) and coronal (bottom row) slices. S = superior; I = inferior; A = anterior; P = posterior. (GIF 2177 kb)

High Resolution (TIFF 14292 kb)

ESM 1

(DOCX 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Middlebrooks, E.H., Yagmurlu, K., Szaflarski, J.P. et al. A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Neuroradiology 59, 69–87 (2017). https://doi.org/10.1007/s00234-016-1772-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-016-1772-0

Keywords

Navigation