Skip to main content
Log in

Dose–response relationship of locally applied nimodipine in an ex vivo model of cerebral vasospasm

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Cerebral vasospasm is a severe complication of subarachnoid hemorrhage (SAH). The calcium channel inhibitor nimodipine has been used for treatment of cerebral vasospasm. No evidence-based recommendations for local nimodipine administration at the site of vasospasm exist. The purpose of this study was to quantify nimodipine's local vasodilatory effect in an ex vivo model of SAH-induced vasospasm.

Methods

SAH-induced vasospasm was modeled by contracting isolated segments of rat superior cerebellar arteries with a combination of serotonin and a synthetic analog of prostaglandin A2. A pressure myograph system was used to determine vessel reactivity of spastic as well as non-spastic arteries.

Results

Compared to the initial vessel diameter, a combination of serotonin and prostaglandin induced considerable vasospasm (55 ± 2.5 % contraction; n = 12; p < 0.001). Locally applied nimodipine dilated the arteries in a concentration-dependent manner starting at concentrations as low as 1 nM (n = 12; p < 0.05). Concentrations higher than 100 nM did not relevantly increase the vasodilatory effect. Nimodipine's vasodilatory effect was smaller in spastic than in non-spastic vessels (n = 12; p < 0.05), which we assume to be due to structural changes in the vessel wall.

Conclusion

The described ex vivo model allows to investigate the dose-dependent efficacy of spasmolytic drugs prior to in vivo experiments. Low concentrations of locally applied nimodipine have a strong vasodilatory effect, which is of relevance when considering the local application of nimodipine in cerebral vasospasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keyrouz SG, Diringer MN (2007) Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care 11(4):220

    Article  PubMed  Google Scholar 

  2. Sehba FA, Bederson JB (2006) Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 28(4):381–398

    Article  PubMed  CAS  Google Scholar 

  3. Al-Tamimi YZ, Orsi NM, Quinn AC, Homer-Vanniasinkam S, Ross SA (2010) A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg 73(6):654–667

    Article  PubMed  Google Scholar 

  4. Kassell NF, Helm G, Simmons N, Phillips CD, Cail WS (1992) Treatment of cerebral vasospasm with intra-arterial papaverine. J Neurosurg 77(6):848–852

    Article  PubMed  CAS  Google Scholar 

  5. Harrod CG, Bendok BR, Batjer HH (2005) Prediction of cerebral vasospasm in patients presenting with aneurysmal subarachnoid hemorrhage: a review. Neurosurgery 56(4):633–654, discussion 633–654

    Article  PubMed  Google Scholar 

  6. Allen GS, Henderson LM, Chou SN, French LA (1974) Cerebral arterial spasm. 1. In vitro contractile activity of vasoactive agents on canine basilar and middle cerebral arteries. J Neurosurg 40(4):433–441

    Article  PubMed  CAS  Google Scholar 

  7. Allen GS, Henderson LM, Chou SN, French LA (1974) Cerebral arterial spasm. 2. In vitro contractile activity of serotonin in human serum and CSF on the canine basilar artery, and its blockage by methylsergide and phenoxybenzamine. J Neurosurg 40(4):442–450

    Article  PubMed  CAS  Google Scholar 

  8. Allen GS, Gold LH, Chou SN, French LA (1974) Cerebral arterial spasm. 3. In vivo intracisternal production of spasm by serotonin and blood and its reversal by phenoxybenzamine. J Neurosurg 40(4):451–458

    Article  PubMed  CAS  Google Scholar 

  9. Allen GS, Gross CJ, Henderson LM, Chou SN (1976) Cerebral arterial spasm. Part 4: in vitro effects of temperature, serotonin analogues, large nonphysiological concentrations of serotonin, and extracellular calcium and magnesium on serotonin-induced contractions of the canine basilar artery. J Neurosurg 44(5):585–593

    Article  PubMed  CAS  Google Scholar 

  10. van Gijn J, Rinkel GJE (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124(2):249–278

    Article  PubMed  Google Scholar 

  11. Bederson JB, Levy AL, Ding WH et al (1998) Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 42(2):352–360, discussion 360–362

    Article  PubMed  CAS  Google Scholar 

  12. Kimball M, Velat G, Hoh B (2011) The participants in the International Multi-disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage. Critical care guidelines on the endovascular management of cerebral vasospasm. Neurocrit Care 15(2):336–341

    Article  PubMed  Google Scholar 

  13. Kazda S, Towart R (1982) Nimodipine: a new calcium antagonistic drug with a preferential cerebrovascular action. Acta Neurochir (Wien) 63(1–4):259–265

    Article  CAS  Google Scholar 

  14. Kazda S, Garthoff B, Krause HP, Schlossmann K (1982) Cerebrovascular effects of the calcium antagonistic dihydropyridine derivative nimodipine in animal experiments. Arzneimittelforschung 32(4):331–338

    PubMed  CAS  Google Scholar 

  15. Freedman DD, Waters DD (1987) “Second generation” dihydropyridine calcium antagonists. Greater vascular selectivity and some unique applications. Drugs 34(5):578–598

    Article  PubMed  CAS  Google Scholar 

  16. Allen GS (1985) Role of calcium antagonists in cerebral arterial spasm. Am J Cardiol 55(3):149B–153B

    Article  PubMed  CAS  Google Scholar 

  17. Brandt L, Andersson KE, Ljunggren B, Säveland H, Ryman T (1988) Cerebrovascular and cerebral effects of nimodipine—an update. Acta Neurochir Suppl (Wien) 45:11–20

    Article  CAS  Google Scholar 

  18. Langley MS, Sorkin EM (1989) Nimodipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cerebrovascular disease. Drugs 37(5):669–699

    Article  PubMed  CAS  Google Scholar 

  19. Ahmed N, Näsman P, Wahlgren NG (2000) Effect of intravenous nimodipine on blood pressure and outcome after acute stroke. Stroke 31(6):1250–1255

    Article  PubMed  CAS  Google Scholar 

  20. Wadworth AN, McTavish D (1992) Nimodipine. A review of its pharmacological properties, and therapeutic efficacy in cerebral disorders. Drugs Aging 2(4):262–286

    Article  PubMed  CAS  Google Scholar 

  21. Biondi A, Ricciardi GK, Puybasset L et al (2004) Intra-arterial nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: preliminary results. AJNR Am J Neuroradiol 25(6):1067–1076

    PubMed  Google Scholar 

  22. Firat MM, Gelebek V, Orer HS, Belen D, Firat AK, Balkanci F (2005) Selective intraarterial nimodipine treatment in an experimental subarachnoid hemorrhage model. AJNR Am J Neuroradiol 26(6):1357–1362

    PubMed  Google Scholar 

  23. Hänggi D, Turowski B, Beseoglu K, Yong M, Steiger HJ (2008) Intra-arterial nimodipine for severe cerebral vasospasm after aneurysmal subarachnoid hemorrhage: influence on clinical course and cerebral perfusion. AJNR Am J Neuroradiol 29(6):1053–1060

    Article  PubMed  Google Scholar 

  24. Hui C, Lau KP (2005) Efficacy of intra-arterial nimodipine in the treatment of cerebral vasospasm complicating subarachnoid haemorrhage. Clin Radiol 60(9):1030–1036

    Article  PubMed  CAS  Google Scholar 

  25. Mayer T, Dichgans M, Straube A et al (2008) Continuous intra-arterial nimodipine for the treatment of cerebral vasospasm. Cardiovasc Interv Radiol 31(6):1200–1204

    Article  Google Scholar 

  26. Sahlin C, Owman C, Chang J-Y, Delgado T, Salford LG, Svendgaard N-A (1990) Changes in contractile response and effect of a calcium antagonist, nimodipine, in isolated intracranial arteries of baboon following experimental subarachnoid hemorrhage. Brain Res Bull 24(3):355–361

    Article  PubMed  CAS  Google Scholar 

  27. Ishiguro M, Wellman TL, Honda A, Russell SR, Tranmer BI, Wellman GC (2005) Emergence of a R-Type Ca2+ Channel (CaV 2.3) Contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ Res 96(4):419–426

    Article  PubMed  CAS  Google Scholar 

  28. Martinez-Lemus LA, Hill MA, Bolz SS, Pohl U, Meininger GA (2004) Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling. FASEB J 18(6):708–710

    PubMed  CAS  Google Scholar 

  29. Hill MA, Potocnik SJ, Martinez-Lemus LA, Meininger GA (2003) Delayed arteriolar relaxation after prolonged agonist exposure: functional remodeling involving tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 285(2):H849–H856

    PubMed  CAS  Google Scholar 

  30. Salomone S, Soydan G, Moskowitz M (2009) Sims. Inhibition of cerebral vasoconstriction by dantrolene and nimodipine. Neurocrit Care 10(1):93–102

    Article  PubMed  CAS  Google Scholar 

  31. Fischer J-G, Mewes H, Hopp H-H, Schubert R (1996) Analysis of pressurized resistance vessel diameter changes with a low cost digital image processing device. Comput Methods Programs Biomed 50(1):23–30

    Article  PubMed  CAS  Google Scholar 

  32. Anschütz S, Schubert R (2005) Modulation of the myogenic response by neurogenic influences in rat small arteries. Br J Pharmacol 146(2):226–233

    Article  PubMed  Google Scholar 

  33. Schubert R (2011) Isolated vessels. In: Dhein S, Mohr FW, Delmar M (eds) Practical methods in cardiovascular research. Berlin/Heidelberg: Springer-Verlag; :198–211. Available at: http://www.springerlink.com/content/n1865n4688292807/. Accessed November 9

  34. Vinall PE, Michele JJ, Gordon DA, Simeone FA (1989) Comparison of intraluminally versus extraluminally administered nimodipine on serotonin-induced cerebral vascular responses in vitro and in situ. Stroke 20(8):1065–1070

    Article  PubMed  CAS  Google Scholar 

  35. Chyatte D, Sundt TM Jr (1984) Cerebral vasospasm after subarachnoid hemorrhage. Mayo Clin Proc 59(7):498–505

    Article  PubMed  CAS  Google Scholar 

  36. Tanabe Y, Sakata K, Yamada H, Ito T, Takada M (1978) Cerebral vasospasm and ultrastructural changes in cerebral arterial wall. An experimental study. J Neurosurg 49(2):229–238

    Article  PubMed  CAS  Google Scholar 

  37. Macdonald RL, Weir BK, Grace MG, Chen MH, Martin TP, Young JD (1992) Mechanism of cerebral vasospasm following subarachnoid hemorrhage in monkeys. Can J Neurol Sci 19(4):419–427

    PubMed  CAS  Google Scholar 

  38. Pluta RM, Hansen-Schwartz J, Dreier J et al (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31(2):151–158

    Article  PubMed  CAS  Google Scholar 

  39. Falloon BJ, Stephens N, Tulip JR, Heagerty AM (1995) Comparison of small artery sensitivity and morphology in pressurized and wire-mounted preparations. Am J Physiol Heart Circ Physiol 268(2), H670–H678

    Google Scholar 

  40. Mulvany MJ, Aalkjaer C (1990) Structure and function of small arteries. Physiol Rev 70(4):921–961

    PubMed  CAS  Google Scholar 

  41. Schambach SJ, Bag S, Steil V et al (2009) Ultrafast high-resolution in vivo volume-cta of mice cerebral vessels. Stroke 40(4):1444–1450

    Article  PubMed  Google Scholar 

  42. Humphrey JD, Baek S, Niklason LE (2007) Biochemomechanics of cerebral vasospasm and its resolution. Ann Biomed Eng 35(9):1485–1497

    Article  PubMed  CAS  Google Scholar 

  43. Anderson GB, Ashforth R, Steinke DE, Findlay JM (2000) CT Angiography for the detection of cerebral vasospasm in patients with acute subarachnoid hemorrhage. Am J Neuroradiol 21(6):1011–1015

    PubMed  CAS  Google Scholar 

  44. Delgado TJ, Brismar J, Svendgaard NA (1985) Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke 16(4):595–602

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki H, Kanamaru K, Tsunoda H et al (1999) Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Invest 104(1):59–66

    Article  PubMed  CAS  Google Scholar 

  46. McKenzie C, MacDonald A, Shaw A (2009) Mechanisms of U46619-induced contraction of rat pulmonary arteries in the presence and absence of the endothelium. Br J Pharmacol 157(4):581–596

    Article  PubMed  CAS  Google Scholar 

  47. Alapati VR, McKenzie C, Blair A, Kenny D, MacDonald A, Shaw AM (2007) Mechanisms of U46619- and 5-HT-induced contraction of bovine pulmonary arteries: role of chloride ions. Br J Pharmacol 151(8):1224–1234

    Article  PubMed  CAS  Google Scholar 

  48. Baek S, Valentín A, Humphrey J (2007) Biochemomechanics of cerebral vasospasm and its resolution: ii. constitutive relations and model simulations. Ann Biomed Eng 35(9):1498–1509

    Article  PubMed  CAS  Google Scholar 

  49. Dreier J, Vajkoczy P, Macdonald RL et al (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31(2):151–158

    Article  PubMed  Google Scholar 

  50. Dzau VJ, Gibbons GH (1993) Vascular remodeling: mechanisms and implications. J Cardiovasc Pharmacol 21(Suppl 1):1–5

    Google Scholar 

  51. Langille BL (1996) Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 74(7):834–841

    Article  PubMed  CAS  Google Scholar 

  52. Wellman GC (2006) Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage. Neurol Res 28(7):690–702

    Article  PubMed  CAS  Google Scholar 

  53. Rämsch KD, Ahr G, Tettenborn D, Auer LM (1985) Overview on pharmacokinetics of nimodipine in healthy volunteers and in patients with subarachnoid hemorrhage. Neurochirurgia (Stuttg) 28(Suppl 1):74–78

    Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Brockmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seker, F., Hesser, J., Neumaier-Probst, E. et al. Dose–response relationship of locally applied nimodipine in an ex vivo model of cerebral vasospasm. Neuroradiology 55, 71–76 (2013). https://doi.org/10.1007/s00234-012-1079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1079-8

Keywords

Navigation