Skip to main content

Advertisement

Log in

T2 hyperintense signal of the central tegmental tracts in children: disease or normal maturational process?

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Cerebral central tegmental tract hyperintense signal on T2-weighted MRI (CTTH) is known from various clinical conditions, including children treated with vigabatrin (VGB) for West syndrome (WS), with hypoxic-ischemic brain injury, and metabolic diseases. Considering this clinical diversity, we hypothesized that CTTH might primarily mirror a physiologic process.

Methods

We retrospectively analysed brain MRI data of the central tegmental tracts deriving from four different groups: (1) children with WS and VGB therapy (WS+VGB+), (2) children with WS but without VGB therapy (WS+VGB−), (3) children with different neurological diseases (WS−VGB−; maximum age 15 years), and (4) controls younger than 25 months of age (this age includes the peak age of WS).

Results

CTTH were detected in 4/17 WS+VGB+ children (24%), 4/34 WS+VGB− children (12%), 18/296 WS-VGB- children (6%), and 8/112 controls (7%). Independently from the underlying diagnosis, CTTH showed a peak age during early infancy and were not found before 4 months and after 7 years of life. The rate of CTTH among WS children ± VGB therapy was similar so that VGB therapy seems of minor etiological impact. However, comparison of WS patients younger than 25 months of age (CTTH present in 7/40) with age-matched controls (CTTH present in 8/112) revealed that CTTH tend to be more frequent among WS patients in general.

Conclusions

Our study suggests that CTTH represents a physiological maturation-related process. The high prevalence of CTTH among patients with WS indicates that this physiological process may be modified by additional endo- or exogeneous factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshida S, Hayakawa K, Yamamoto A, Aida N, Okano S, Matsushita H, Kanda T, Yamori Y, Yoshida N, Hirota H (2009) Symmetrical central tegmental tact (CTT) hyperintense lesions on magnetic resonance imaging. Eur Radiol 19(2):462–469

    Article  PubMed  Google Scholar 

  2. Hayashi M (2001) Neuropathology of the limbic system and brainstem in West syndrome. Brain Dev 23(7):516–522

    Article  PubMed  CAS  Google Scholar 

  3. Khong PL, Lam BC, Chung BH, Wong KY, Ooi GC (2003) Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. AJNR Am J Neuroradiol 24(6):1181–1183

    PubMed  Google Scholar 

  4. Sakai Y, Kira R, Torisu H, Ihara K, Yoshiura T, Hara T (2006) Persistent diffusion abnormalities in the brain stem of three children with mitochondrial diseases. AJNR Am J Neuroradiol 27(9):1924–1926

    PubMed  CAS  Google Scholar 

  5. Tada H, Takanashi J, Barkovich AJ, Yamamoto S, Kohno Y (2004) Reversible white matter lesion in methionine adenosyltransferase I/III deficiency. AJNR Am J Neuroradiol 25(10):1843–1845

    PubMed  Google Scholar 

  6. van der Knaap MS, Barth PG, Gabreels FJ, Franzoni E, Begeer JH, Stroink H, Rotteveel JJ, Valk J (1997) A new leukoencephalopathy with vanishing white matter. Neurology 48(4):845–855

    Article  PubMed  Google Scholar 

  7. Takanashi J, Kanazawa M, Kohno Y (2006) Central tegmental tract involvement in an infant with 6-pyruvoyltetrahydropterin synthetase deficiency. AJNR Am J Neuroradiol 27(3):584–585

    PubMed  CAS  Google Scholar 

  8. Sugama S, Eto Y (2003) Brainstem lesions in children with perinatal brain injury. Pediatr Neurol 28(3):212–215

    Article  PubMed  Google Scholar 

  9. Shioda M, Hayashi M, Takanashi J, Osawa M (2011) Lesions in the central tegmental tract in autopsy cases of developmental brain disorders. Brain Dev 33(7):541–577

    Article  PubMed  Google Scholar 

  10. Pearl PL, Vezina LG, Saneto RP, McCarter R, Molloy-Wells E, Heffron A, Trzcinski S, McClintock WM, Conry JA, Elling NJ, Goodkin HP, de Menezes MS, Ferri R, Gilles E, Kadom N, Gaillard WD (2009) Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 50(2):184–194

    Article  PubMed  CAS  Google Scholar 

  11. Dracopoulos A, Widjaja E, Raybaud C, Westall CA, Snead OCr (2010) Vigabatrin-associated reversible MRI signal changes in patients with infantile spasms. Epilepsia 51(7):1297–1304

    Article  PubMed  Google Scholar 

  12. Wheless JW, Carmant L, Bebin M, Conry JA, Chiron C, Elterman RD, Frost M, Paolicchi JM, Donald Shields W, Thiele EA, Zupanc ML, Collins SD (2009) Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 50(2):195–205

    Article  PubMed  CAS  Google Scholar 

  13. Cohen JA, Fisher RS, Brigell MG, Peyster RG, Sze G (2000) The potential for vigabatrin-induced intramyelinic edema in humans. Epilepsia 41(2):148–157

    Article  PubMed  CAS  Google Scholar 

  14. Horton M, Rafay M, Del Bigio MR (2009) Pathological evidence of vacuolar myelinopathy in a child following vigabatrin administration. J Child Neurol 24(12):1543–1546

    Article  PubMed  Google Scholar 

  15. Simao GN, Zarei Mahmoodabadi S, Snead OC, Go C, Widjaja E (2011) Abnormal axial diffusivity in the deep gray nuclei and dorsal brain stem in infantile spasm treated with vigabatrin. AJNR Am J Neuroradiol 32(1):199–203

    PubMed  CAS  Google Scholar 

  16. Milh M, Villeneuve N, Chapon F, Pineau S, Lamoureux S, Livet MO, Bartoli C, Hugonenq C, Mancini J, Chabrol B, Girard N (2009) Transient brain magnetic resonance imaging hyperintensity in basal ganglia and brain stem of epileptic infants treated with vigabatrin. J Child Neurol 24(3):305–315

    Article  PubMed  Google Scholar 

  17. Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105(2):223–269

    Article  PubMed  CAS  Google Scholar 

  18. Massion J (1988) Red nucleus: past and future. Behav Brain Res 28(1–2):1–8

    Article  PubMed  CAS  Google Scholar 

  19. Onodera S, Hicks TP (2009) A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One 4(8):e6623

    Article  PubMed  Google Scholar 

  20. Habas C, Cabanis EA (2007) Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T. Neuroradiology 49(9):777–784

    Article  PubMed  Google Scholar 

  21. van Kan PL, McCurdy ML (2001) Role of primate magnocellular red nucleus neurons in controlling hand preshaping during reaching to grasp. J Neurophysiol 85(4):1461–1478

    PubMed  Google Scholar 

  22. Ulfig N, Chan WY (2001) Differential expression of calcium-binding proteins in the red nucleus of the developing and adult human brain. Anat Embryol (Berl) 203(2):95–108

    Article  CAS  Google Scholar 

  23. Hittmair K, Kramer J, Rand T, Bernert G, Wimberger D (1996) Infratentorial brain maturation: a comparison of MRI at 0.5 and 1.5 T. Neuroradiology 38(4):360–366

    PubMed  CAS  Google Scholar 

  24. Roland EH, Hill A, Norman MG, Flodmark O, MacNab AJ (1988) Selective brainstem injury in an asphyxiated newborn. Ann Neurol 23(1):89–92

    Article  PubMed  CAS  Google Scholar 

  25. Avanzini G, Panzica F, Franceschetti S (2002) Brain maturational aspects relevant to pathophysiology of infantile spasms. Int Rev Neurobiol 49:353–365

    Article  PubMed  CAS  Google Scholar 

  26. Siniatchkin M, Coropceanu D, Moeller F, Boor R, Stephani U (2011) EEG-fMRI reveals activation of brainstem and thalamus in patients with Lennox–Gastaut syndrome. Epilepsia 52(4):766–774

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Häusler.

Additional information

Sergio Aguilera-Albesa and Andrea Poretti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilera-Albesa, S., Poretti, A., Honnef, D. et al. T2 hyperintense signal of the central tegmental tracts in children: disease or normal maturational process?. Neuroradiology 54, 863–871 (2012). https://doi.org/10.1007/s00234-012-1006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1006-z

Keywords

Navigation