Skip to main content
Log in

Diffusion tensor imaging of early changes in corpus callosum after acute cerebral hemisphere lesions in newborns

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The main purpose was to investigate any early diffusion tensor imaging (DTI) changes in corpus callosum (CC) associated with acute cerebral hemisphere lesions in term newborns.

Methods

We retrospectively analysed 19 cases of term newborns acutely affected by focal or multi-focal lesions: hypoxic-ischemic encephalopathy, hypoglycaemic encephalopathy, focal ischemic stroke and deep medullary vein associated lesions. DTI was acquired at 1.5 Tesla with dedicated neonatal coil. DTI metrics (apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial \( {\lambda_\parallel } \) and radial \( {\lambda_\bot } \) diffusivity) were measured in the hemisphere lesions and in the CC. The control group included seven normal newborns.

Results

The following significant differences were found between patients and normal controls in the CC: mean ADC was lower in patients (0.88 SD 0.23 versus 1.18 SD 0.07 μm2/s) and so was mean FA (0.50 SD 0.1 versus 0.67 SD 0.05) and mean \( {\lambda_\parallel } \) value (1.61 SD 0.52 versus 2.36 SD 0.14 μm2/s). In CC the percentage of ADC always diminished independently of lesion age (with one exception), whereas in hemisphere lesions, it was negative in earlier lesions, but exceeded normal values in the older lesions.

Conclusion

CC may undergo early DTI changes in newborns with acute focal or multi-focal hemisphere lesions of different aetiology. Although a direct insult to CC cannot be totally ruled out, DTI changes in CC (in particular \( {\lambda_\parallel } \)) may also be compatible with very early Wallerian degeneration or pre-Wallerian degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barkovich AJ (1992) MR and CT evaluation of profound neonatal and infantile asphyxia. AJNR Am J Neuroradiol 13:959–972

    CAS  PubMed  Google Scholar 

  2. Rutherford MA, Ward P, Malamatentiou C (2005) Advanced MR techniques in the term-born neonate with perinatal brain injury. Semin Fetal Neonatal Med 10:445–460

    PubMed  Google Scholar 

  3. Triulzi F, Parazzini C, Righini A (2006) Patterns of damage in the mature neonatal brain. Pediatr Radiol 36:608–620

    Article  PubMed  Google Scholar 

  4. Mazumdar A, Mukherjee P, Miller JH, Malde H, McKinstry RC (2003) Diffusion-weighted imaging of acute corticospinal tract injury preceding Wallerian degeneration in the maturing human brain. AJNR Am J Neuroradiol 24:1057–1066

    PubMed  Google Scholar 

  5. Kirton A, Shroff M, Visvanathan T, deVeber G (2007) Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcome. Stroke 38:974–980

    Article  PubMed  Google Scholar 

  6. Barkovich AJ, Miller SP, Bartha A et al (2006) MR Imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol 27:533–547

    CAS  PubMed  Google Scholar 

  7. Chau V, Poskitt KJ, Miller SP (2009) Advanced neuroimaging techniques for the term newborn with encephalopathy. Pediatr Neurol 40:181–188

    Article  PubMed  Google Scholar 

  8. Sun SW, Liang HF, Cross AH, Song SK (2008) Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage 40:1–10

    Article  CAS  PubMed  Google Scholar 

  9. Takagi T, Nakamura M, Yamada M et al (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 44:884–892

    Article  PubMed  Google Scholar 

  10. Gao W, Lin W, Chen Y et al (2009) Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR Am J Neuroradiol 30:290–296

    Article  CAS  PubMed  Google Scholar 

  11. Derugin N, Wendland M, Muramatsu K et al (2000) Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rats. Stroke 31:1752–1761

    CAS  PubMed  Google Scholar 

  12. Robertson RL, Ben-Sira L, Barnes PD et al (1999) MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. AJNR Am J Neuroradiol 20:1658–1670

    CAS  PubMed  Google Scholar 

  13. Pierpaoli C, Alger JR, Righini A et al (1996) High temporal resolution diffusion MRI of global cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 16:892–905

    Article  CAS  PubMed  Google Scholar 

  14. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722

    Article  PubMed  Google Scholar 

  15. Song SK, Ju WK, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26:132–140

    Article  PubMed  Google Scholar 

  16. Mack TG, Reiner M, Beirowski B et al (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4:1199–1206

    Article  CAS  PubMed  Google Scholar 

  17. Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T (2005) In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11:572–577

    Article  CAS  PubMed  Google Scholar 

  18. Concha L, Gross DW, Matt Wheatley B, Beaulieu C (2006) Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage 32:1090–1099

    Article  PubMed  Google Scholar 

  19. Trendelenburg G, Dirnagl U (2005) Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 51:307–320

    Article  Google Scholar 

  20. Takanashi J, Tada H, Terada H, Barkovich AJ (2009) Excitotoxicity in acute encephalopathy with biphasic seizures and late reduced diffusion. AJNR Am J Neuroradiol 30:132–135

    Article  CAS  PubMed  Google Scholar 

  21. Rumpel H, Nedelcu J, Aguzzi A et al (1997) Late glial swelling after acute cerebral hypoxia-ischemia in the neonatal rat. A combined magnetic resonance and histochemical study. Pediatr Res 42:54–59

    Article  CAS  PubMed  Google Scholar 

  22. Tuor UI, Kozlowski P, Del Bigio MR et al (1998) Diffusion- and T2-weighted increases in magnetic resonance images of immature brain during hypoxia-ischemia. Transient reversal posthypoxia. Exp Neurol 150:321–328

    Article  CAS  PubMed  Google Scholar 

  23. Alkalay AL, Flores-Sarnat L, Sarnat HB, Moser FG, Simmons CF (2005) Brain imaging findings in neonatal hypoglycemia: case report and review of 23 cases. Clin Pediatr 44:783–790

    Article  Google Scholar 

  24. Kim SY, Goo HW, Lim KH, Kim ST, Kim KS (2006) Neonatal hypoglycaemic encephalopathy: diffusion-weighted. imaging and proton MR spectroscopy. Pediatr Radiol 36:144–148

    Article  PubMed  Google Scholar 

  25. Filan PM, Inder TE, Cameron FJ, Kean MJ, Hunt RW (2006) Neonatal hypoglycemia and occipital cerebral injury. J Pediatr 148:552–555

    Article  PubMed  Google Scholar 

  26. Takanashi J, Barkovich AJ, Ferriero DM, Suzuki H, Kohno Y (2003) Widening spectrum of congenital hemiplegia. Periventricular venous infarction in term neonates. Neurology 61:531–533

    CAS  PubMed  Google Scholar 

  27. Ramenghi LA, Gill BJ, Tanner SF, Martinez D, Arthur R, Levene MI (2002) Cerebral venous thrombosis, intraventricular haemorrhage and white matter lesions in a preterm newborn with factor V (Leiden) mutation. Neuropediatrics 33:97–99

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura Y, Okudera T, Hashimoto T (1994) Vascular architecture in white matter of neonates: its relationship to periventricular leukomalacia. J Neuropathol Exp Neurol 53:582–589

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Righini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Righini, A., Doneda, C., Parazzini, C. et al. Diffusion tensor imaging of early changes in corpus callosum after acute cerebral hemisphere lesions in newborns. Neuroradiology 52, 1025–1035 (2010). https://doi.org/10.1007/s00234-010-0745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0745-y

Keywords

Navigation