Skip to main content

Advertisement

Log in

Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to determine whether tract-specific diffusion tensor imaging measures in somatosensory and motor pathways correlate with clinical grades as defined using the Gross Motor Function Classification System (GMFCS) in cerebral palsy (CP) children.

Methods

Quantitative diffusion tensor tractography was performed on 39 patients with spastic quadriparesis (mean age = 8 years) and 14 age/sex-matched controls. All patients were graded on the basis of GMFCS scale into grade II (n = 12), grade IV (n = 22), and grade V (n = 5) CP and quantitative analysis reconstruction of somatosensory and motor tracts performed.

Results

Significant inverse correlation between clinical grade and fractional anisotropy (FA) was observed in both right and left motor and sensory tracts. A significant direct correlation of mean diffusivity values from both motor and sensory tracts was also observed with clinical grades. Successive decrease in FA values was observed in all tracts except for left motor tracts moving from age/sex-matched controls to grade V through grades II and IV.

Conclusion

We conclude that white matter tracts from both the somatosensory and the motor cortex play an important role in the pathophysiology of motor disability in patients with CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mutch L, Alberman E, Hagberg B, Kodama K, Perat MV (1992) Cerebral palsy epidemiology: where are we now and where are we going? Dev Med Child Neurol 34:547–551

    CAS  PubMed  Google Scholar 

  2. Berman JI, Mukherjee P, Partridge SC, Miller SP, Ferriero DM, Barkovich AJ, Vigneron DB, Henry RG (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871

    Article  PubMed  Google Scholar 

  3. Hoon AH Jr, Stashinko EE, Nagae LM, Lin DD, Keller J, Bastian A, Campbell ML, Levey E, Mori S, Johnston MV (2009) Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol 51:697–704

    Article  PubMed  Google Scholar 

  4. Hoon AH Jr, Lawrie WT Jr, Melhem ER, Reinhardt EM, Van Zijl PC, Solaiyappan M, Jiang H, Johnston MV, Mori S (2002) Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 59:752–756

    PubMed  Google Scholar 

  5. Nagae LM, Hoon AH Jr, Stashinko E, Lin D, Zhang W, Levey E, Wakana S, Jiang H, Leite CC, Lucato LT, van Zijl PC, Johnston MV, Mori S (2007) Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. AJNR Am J Neuroradiol 28:1213–1222

    Article  CAS  PubMed  Google Scholar 

  6. Ashwal S, Russman BS, Blasco PA et al (2004) Practice parameter: diagnostic assessment of the child with cerebral palsy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 62:851–863

    CAS  PubMed  Google Scholar 

  7. Gilles FH, Leviton A, Golden JA, Paneth N, Rudelli RD (1998) Groups of histopathologic abnormalities in brains of very low birthweight infants. J Neuropathol Exp Neurol 57:1026–1034

    Article  CAS  PubMed  Google Scholar 

  8. Volpe JJ (2003) Cerebral white matter injury of the premature infant-more common than you think. Pediatrics 112:176–180

    Article  PubMed  Google Scholar 

  9. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  PubMed  Google Scholar 

  10. Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456

    PubMed  Google Scholar 

  11. Saksena S, Husain N, Malik GK, Trivedi R, Sarma M, Rathore RS, Pandey CM, Gupta RK (2008) Comparative evaluation of the cerebral and cerebellar white matter development in pediatric age group using quantitative diffusion tensor imaging. Cerebellum 7:392–400

    Article  PubMed  Google Scholar 

  12. Gupta RK, Hasan KM, Trivedi R, Pradhan M, Das V, Parikh NA, Narayana PA (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178

    Article  CAS  PubMed  Google Scholar 

  13. Horsfield MA, Jones DK (2002) Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases—a review. NMR Biomed 15:570–577

    Article  PubMed  Google Scholar 

  14. Trivedi R, Gupta RK, Agarawal A, Hasan KM, Gupta A, Prasad KN, Bayu G, Rathore D, Rathore RK, Narayana PA (2006) Assessment of white matter damage in subacute sclerosing panencephalitis using quantitative diffusion tensor MR imaging. AJNR Am J Neuroradiol 27:1712–1716

    CAS  PubMed  Google Scholar 

  15. Gupta RK, Saksena S, Hasan KM, Agarwal A, Haris M, Pandey CM, Narayana PA (2006) Focal Wallerian degeneration of the corpus callosum in large middle cerebral artery stroke: serial diffusion tensor imaging. J Magn Reson Imaging 24:549–555

    Article  PubMed  Google Scholar 

  16. Gupta RK, Saksena S, Agarwal A, Hasan KM, Husain M, Gupta V, Narayana PA (2005) Diffusion tensor imaging in late posttraumatic epilepsy. Epilepsia 46:1465–1471

    Article  PubMed  Google Scholar 

  17. Malik GK, Trivedi R, Gupta RK, Hasan KM, Hasan M, Gupta A, Pandey CM, Narayana PA (2006) Serial quantitative diffusion tensor MRI of the term neonates with hypoxic-ischemic encephalopathy (HIE). Neuropediatrics 37:337–343

    Article  CAS  PubMed  Google Scholar 

  18. Trivedi R, Gupta RK, Shah V, Tripathi M, Rathore RK, Kumar M, Pandey CM, Narayana PA (2008) Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study. Pediatr Neurol 39:341–349

    Article  PubMed  Google Scholar 

  19. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  20. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  21. Toosy AT, Ciccarelli O, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ (2004) Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage 21:1452–1463

    Article  PubMed  Google Scholar 

  22. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536

    Article  PubMed  Google Scholar 

  23. Parker GJ, Luzzi S, Alexander DC, Wheeler-Kingshott CA, Ciccarelli O, Lambon Ralph MA (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24:656–666

    Article  PubMed  Google Scholar 

  24. Lee SK, Mori S, Kim DJ, Kim SY, Kim SY, Kim DI (2004) Diffusion tensor MR imaging visualizes the altered hemispheric fiber connection in callosal dysgenesis. AJNR Am J Neuroradiol 25:25–28

    CAS  PubMed  Google Scholar 

  25. Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, van Zijl PC, Hillis AE, Wytik R, Mori S (2005) DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage 26:195–205

    Article  PubMed  Google Scholar 

  26. Taneja V, Sriram S, Beri RS, Sreenivas V, Aggarwal R, Kaur R (2002) Not by bread alone: impact of a structured 90-minute play session on development of children in an orphanage. Child Care Health Dev 28:95–100

    Article  CAS  PubMed  Google Scholar 

  27. Jones MW, Morgan E, Shelton JE, Thorogood C (2007) Cerebral palsy: introduction and diagnosis (part I). J Pediatr Health Care 21:146–152

    Article  PubMed  Google Scholar 

  28. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39:214–223

    Article  CAS  PubMed  Google Scholar 

  29. Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67:206–207

    CAS  PubMed  Google Scholar 

  30. Trivedi R, Agarwal S, Rathore RK, Saksena S, Tripathi RP, Malik GK, Pandey CM, Gupta RK (2009) Understanding development and lateralization of major cerebral fiber bundles in pediatric population through quantitative diffusion tensor tractography (DTT). Pediatr Res 66:636–641

    Article  PubMed  Google Scholar 

  31. Volpe JJ (1989) Current concepts of brain injury in the premature infant. AJR Am J Roentgenol 153:243–251

    CAS  PubMed  Google Scholar 

  32. Drobyshevsky A, Derrick M, Wyrwicz AM, Ji X, Englof I, Ullman LM, Zelaya ME, Northington FJ, Tan S (2007) White matter injury correlates with hypertonia in an animal model of cerebral palsy. J Cereb Blood Flow Metab 27:270–281

    Article  CAS  PubMed  Google Scholar 

  33. Crothers B, Paine RS (1988) The natural history of cerebral palsy. In: Mitchell RG (ed) Classics in developmental medicine. MacKeith Press, London

    Google Scholar 

  34. Rugg-Gunn FJ, Symms MR, Barker GJ, Greenwood R, Duncan JS (2001) Diffusion imaging shows abnormalities after blunt head trauma when conventional magnetic resonance imaging is normal. J Neurol Neurosurg Psychiatry 70:530–533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Department of Science and Technology, New Delhi, India, grant no. SR/SO/HS/0125/2007.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivedi, R., Agarwal, S., Shah, V. et al. Correlation of quantitative sensorimotor tractography with clinical grade of cerebral palsy. Neuroradiology 52, 759–765 (2010). https://doi.org/10.1007/s00234-010-0703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0703-8

Keywords

Navigation