Skip to main content
Log in

In vitro comparison of different carotid artery stents: a pixel-by-pixel analysis using CT angiography and contrast-enhanced MR angiography at 1.5 and 3 T

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

CT angiography (CTA) and MR angiography (MRA) are increasingly used methods for evaluation of stented vessel segments. The purpose of this study was to compare CTA, contrast-enhanced MRA (CEMRA) at 1.5 T, and CEMRA at 3 T for the visualization of carotid artery stents and to define the best noninvasive imaging technique for each stent.

Methods

CTA and CEMRA appearances of 18 carotid artery stents of different designs and sizes (4.0 to 10.0 mm) were investigated in vitro. The profile of the contrast-to-noise ratio (CNR) of the lumen of each stent was calculated semiautomatically by a pixel-by-pixel analysis using the medical imaging software OSIRIS®. For each stent, artificial lumen narrowing (ALN) was calculated.

Results

In all but one stents, ALN was lower on CEMRA at 3 T than at 1.5 T. With CEMRA at 3 T and at 1.5 T, ALN in most nitinol stents was lower than in the groups of stainless steel and cobalt alloy stents. In most nitinol stents, ALN on CEMRA at 3 T was lower than on CTA. In all stainless steel stents and cobalt alloy stents, ALN was lower on CTA than on CEMRA. With CTA and CEMRA, in most stents ALN decreased with increasing stent diameter.

Conclusion

CTA and CEMRA evaluation of vessel patency after stent placement is possible, but considerably impaired by ALN. Investigators should be informed about the method of choice for every stent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eckstein HH, Ringleb P, Allenberg JR, Berger J, Fraedrich G, Hacke W, Hennerici M, Stingele R, Fiehler J, Zeumer H, Jansen O (2008) Results of the stent-protected angioplasty versus carotid endarterectomy (SPACE) study to treat symptomatic stenoses at 2 years: a multinational, prospective, randomised trial. Lancet Neurol 7:893–902

    Article  PubMed  Google Scholar 

  2. Grunwald IQ, Papanagiotou P, Roth C, Fassbender K, Karp K, Krick C, Schieber H, Müller M, Haass A, Reith W (2009) Lesion load in unprotected carotid artery stenting. Neuroradiology 51:313–317

    Article  CAS  PubMed  Google Scholar 

  3. Bendszus M, Koltzenburg M, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L (1999) Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet 354:1594–1597

    Article  CAS  PubMed  Google Scholar 

  4. Dawkins AA, Evans AL, Wattam J, Romanowski CAJ, Connolly DJA, Hodgson TJ, Coley SC (2007) Complications of cerebral angiography: a prospective analysis of 2, 924 consecutive procedures. Neuroradiology 49:753–759

    Article  CAS  PubMed  Google Scholar 

  5. Hähnel S, Trossbach M, Braun C, Heiland S, Knauth M, Sartor K, Hartmann M (2003) Small-vessel stents for intracranial angioplasty: in vitro comparison of different stent designs and sizes by using CT angiography. AJNR Am J Neuroradiol 24:1512–1516

    PubMed  Google Scholar 

  6. Lenhart M, Völk M, Manke C, Nitz WR, Strotzer M, Feuerbach S, Link J (2000) Stent appearance at contrast-enhanced MR angiography: in vitro examination with 14 stents. Radiology 217:173–178

    CAS  PubMed  Google Scholar 

  7. Wall A, Kugel H, Bachman R, Matuszewski L, Krämer S, Heindel W, Maintz D (2005) 3.0 T vs. 1.5 T MR angiography: in vitro comparison of intravascular stent artifacts. J Magn Reson Imaging 22:772–779

    Article  PubMed  Google Scholar 

  8. Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol 154:623–629

    CAS  PubMed  Google Scholar 

  9. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850

    Article  CAS  PubMed  Google Scholar 

  10. Bakker CJ, Bhagwandien R, Moerland MA, Ramos LM (1994) Simulation of susceptibility artifacts in 2D and 3D fourier transform spin-echo and gradient-echo magnetic resonance imaging. Magn Reson Imaging 12:767–774

    Article  CAS  PubMed  Google Scholar 

  11. Bartels LW, Bakker CJ, Viergever MA (2002) Improved lumen visualization in metallic vascular implants by reducing RF artifacts. Magn Reson Med 47:171–180

    Article  PubMed  Google Scholar 

  12. Wang Y, Truong TN, Yen C, Bilecen D, Watts R, Trost DW, Prince MR (2003) Quantitative evaluation of susceptibility and shielding effects of nitinol, platinum, cobalt-alloy, and stainless steel stents. Magn Reson Med 49:972–976

    Article  PubMed  Google Scholar 

  13. Klemm T, Duda S, Machann J, Seekamp-Rahn K, Schnieder L, Claussen CD, Schick F (2000) MR imaging in the presence of vascular stents: a systematic assessment of artifacts for various stent orientations, sequence types, and field strengths. J Magn Reson Imaging 12:606–615

    Article  CAS  PubMed  Google Scholar 

  14. Graf H, Klemm T, Lauer UA, Duda S, Claussen CD, Schick F (2003) Systematics of imaging artifacts in MRT caused by metallic vascular implants (stents). Röfo 175:1711–1719

    CAS  PubMed  Google Scholar 

  15. Krämer SC, Wall A, Maintz D, Bachmann R, Kugel H, Heindel W (2004) 3.0 Tesla magnetic resonance angiography of endovascular aortic stent grafts: phantom measurements in comparison with 1.5 Tesla. Invest Radiol 39:413–417

    Article  PubMed  Google Scholar 

  16. Hähnel S, Nguyen-Trong TH, Rohde S, Hartmann M, Braun C, Sartor K, Heiland S (2006) 3.0 Tesla contrast-enhanced MR angiography of carotid artery stents: in vitro measurements as compared with 1.5 Tesla. J Neuroradiol 33:75–80

    Article  PubMed  Google Scholar 

  17. Buecker A, Spuentrup E, Ruebben A, Günther RW (2002) Artifact-free in-stent lumen visualization by standard magnetic resonance angiography using a new metallic magnetic resonance imaging stent. Circulation 105:1772–1775

    Article  PubMed  Google Scholar 

  18. Bartels LW, Smits HF, Bakker CJ, Viergever MA (2001) MR imaging of vascular stents: effects of susceptibility, flow, and radiofrequency eddy currents. J Vasc Interv Radiol 12:365–371

    Article  CAS  PubMed  Google Scholar 

  19. Holton A, Walsh E, Anayiotos A, Pohost G, Venugopalan R (2002) Comparative MRI compatibility of 316 L stainless steel alloy and nickel-titanium alloy stents. J Cardiovasc Magn Reson 4:423–430

    Article  PubMed  Google Scholar 

  20. Meyer JM, Buecker A, Spuentrup E, Schuermann K, Huetten M, Hilgers RD, van Vaals JJ, Guenther RW (2001) Improved in-stent magnetic resonance angiography with high flip angle excitation. Invest Radiol 36:677–681

    Article  CAS  PubMed  Google Scholar 

  21. Straube T, Wolf S, Flesser A, Deli M, Alfke K, Nabavi A, Jansen O (2005) MRI of carotid stents: influence of stent properties and sequence parameters on visualization of the carotid artery lumen. Röfo 177:375–380

    CAS  PubMed  Google Scholar 

  22. Strotzer M, Lenhart M, Butz B, Volk M, Manke C, Feuerbach S (2001) Appearance of vascular stents in computed tomographic angiography: in vitro examination of 14 different stent types. Invest Radiol 36:652–658

    Article  CAS  PubMed  Google Scholar 

  23. Heuschmid M, Wiesinger B, Tepe G, Luz O, Kopp AF, Claussen CD, Duda SH (2007) Evaluation of various image reconstruction parameters in lower extremity stents using multidetector-row CT angiography: initial findings. Eur Radiol 17:265–271

    Article  PubMed  Google Scholar 

  24. Maintz D, Seifarth H, Raupach R, Flohr T, Rink M, Sommer T, Ozgün M, Heindel W, Fischbach R (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16:818–826

    Article  PubMed  Google Scholar 

  25. Bladin CF, Alexandrova NA, Murphy J, Alexandrov AV, Maggisano R, Norris JW (1996) The clinical value of methods to measure carotid stenosis. Int Angiol 15:295–299

    CAS  PubMed  Google Scholar 

  26. Watarai H, Kaku Y, Yamada M, Kokuzawa J, Tanaka T, Andoh T, Iwama T (2009) Follow-up study on in-stent thrombosis after carotid stenting using multidetector CT angiography. Neuroradiology 51:243–251

    Article  PubMed  Google Scholar 

  27. Mordasini P, Al-Senani F, Gralla J, Do D-D, Brekenfeld C, Schroth G (2009) The use of flat panel angioCT (DynaCT) for navigation through a deformed and fractured carotid stent. Neuroradiology. doi:10.1007/s00234-009-0556-1

  28. Maintz D, Tombach B, Juergens KU, Weigel S, Heindel W, Fischbach R (2002) Revealing in-stent stenoses of the iliac arteries: comparison of multidetector CT with MR angiography and digital radiographic angiography in a phantom model. AJR Am J Roentgenol 179:1319–1322

    PubMed  Google Scholar 

  29. Amano Y, Ishihara M, Hayashi H, Gemma K, Kawamata H, Amano M, Kumazaki T (1999) Metallic artifacts of coronary and iliac arteries stents in MR angiography and contrast-enhanced CT. Clin Imaging 23:85–89

    Article  CAS  PubMed  Google Scholar 

  30. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lettau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lettau, M., Sauer, A., Heiland, S. et al. In vitro comparison of different carotid artery stents: a pixel-by-pixel analysis using CT angiography and contrast-enhanced MR angiography at 1.5 and 3 T. Neuroradiology 52, 823–830 (2010). https://doi.org/10.1007/s00234-009-0625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0625-5

Keywords

Navigation