Skip to main content
Log in

The Fredholm Property for Groupoids is a Local Property

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Fredholm Lie groupoids were introduced by Carvalho, Nistor and Qiao as a tool for the study of partial differential equations on open manifolds. This article extends the definition to the setting of locally compact groupoids and proves that “the Fredholm property is local”. Let \({\mathcal {G}}\rightrightarrows X\) be a topological groupoid and \((U_i)_{i\in I}\) be an open cover of X. We show that \({\mathcal {G}}\) is a Fredholm groupoid if, and only if, its reductions \({\mathcal {G}}^{U_i}_{U_i}\) are Fredholm groupoids for all \(i \in I\). We exploit this criterion to show that many groupoids encountered in practical applications are Fredholm. As an important intermediate result, we use an induction argument to show that the primitive spectrum of \(C^*({\mathcal {G}})\) can be written as the union of the primitive spectra of all \(C^*({\mathcal {G}}^{U_i}_{U_i})\), for \(i \in I\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is an alternate definition of \(C_c({\mathcal {G}})\) that is due to Crainic [11]. Connes’ algebra is smaller: it is a quotient of Crainic’s algebra. Note that both algebras separate points of \({\mathcal {G}}\).

References

  1. Ammann, B., Lauter, R., Nistor, V.: On the geometry of Riemannian manifolds with a Lie structure at infinity. Int. J. Math. Math. Sci. 1–4, 161–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Camb. Philos. Soc. 79(1), 71–99 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Singer, I.M.: The index of elliptic operators. I. Ann. Math. Second Ser. 87, 484–530 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bigonnet, B., Pradines, J.: Graphe d’un feuilletage singulier. C. R. Acad. Sci. Paris Sér. I Math. 300(13), 439–442 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Bohlen, K., Schrohe, E.: Getzler rescaling via adiabatic deformation and a renormalized index formula. J. Math. Pures Appl. 9(120), 220–252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohlen, K., Schulz, R.: Quantization on manifolds with an embedded submanifold (2017). arXiv e-prints, arXiv:1710.02294

  7. Carvalho, C., Côme, R., Qiao, Y.: Gluing action groupoids: Fredholm conditions and layer potentials (2018). arXiv e-prints, arXiv:1811.07699v1

  8. Carvalho, C., Nistor, V., Qiao, Y.: Fredholm conditions on non-compact manifolds: theory and examples. In: André, C., Bastos, M., Karlovich, A., Silbermann, B., Zaballa, I. (eds.) Operator Theory, Operator Algebras, and Matrix Theory, Operator Theory: Advances and Applications, vol. 267 , pp. 79–122. Birkhäuser, Cham (2018)

    Chapter  Google Scholar 

  9. Carvalho, C., Qiao, Y.: Layer potentials \(C^*\)-algebras of domains with conical points. Cent. Eur. J. Math. 11(1), 27–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Connes, A.: A survey of foliations and operator algebras. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proceedings of Symposia in Pure Mathematics, vol. 38, pp. 521–628. American Mathematical Society, Providence (1982)

  11. Crainic, M.: Cyclic cohomology of étale groupoids: the general case. \(K\)-Theory 17(4), 319–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crainic, M., Fernandes, R.L.: Integrability of Lie brackets. Ann. Math. (2) 157(2), 575–620 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dauge, M.: Elliptic boundary value problems on corner domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988). (Smoothness and asymptotics of solutions)

  14. Debord, C.: Holonomy groupoids of singular foliations. J. Differ. Geom. 58(3), 467–500 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Debord, C., Lescure, J.-M., Rochon, F.: Pseudodifferential operators on manifolds with fibred corners. Université de Grenoble. Annales de l’Institut Fourier 65(4), 1799–1880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Debord, C., Skandalis, G.: Adiabatic groupoid, crossed product by \(\mathbb{R}_{+}^{\ast }\) and pseudodifferential calculus. Adv. Math. 257, 66–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Debord, C., Skandalis, G.: Blowup constructions for Lie groupoids and a Boutet de Monvel type calculus (2017). arXiv e-prints, arXiv:1705.09588v2

  18. Dixmier, J.: \(C^*\)-algebras. North-Holland Publishing Co., Amsterdam (1977). Translated from the French by Francis Jellett, North-Holland Mathematical Library, vol. 15 (1977)

  19. Georgescu, V., Iftimovici, A.: Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory. Rev. Math. Phys. 18(4), 417–483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gilkey, P.B.: Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Mathematics Lecture Series, vol. 11. Publish or Perish, Inc., Wilmington (1984)

  21. Gualtieri, M., Li, S.: Symplectic groupoids of log symplectic manifolds. Int. Math. Res. Not. IMRN 11, 3022–3074 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hebey, E., Robert, F.: Sobolev spaces on manifolds. In: Handbook of Global Analysis, pp. 375–415. Elsevier Sci. B. V., Amsterdam (2008)

    Chapter  Google Scholar 

  23. Hilsum, M., Skandalis, G.: Morphismes \(K\)-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes). Ann. Sci. École Norm. Sup. (4) 20(3), 325–390 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hörmander, L.: The analysis of linear partial differential operators. III. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274. Springer, Berlin (1985). (Pseudodifferential operators) (1985)

  25. Ionescu, M., Williams, D.: The generalized Effros–Hahn conjecture for groupoids. Indiana Univ. Math. J. 58(6), 2489–2508 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Joyce, D.: On manifolds with corners. In: Advances in Geometric Analysis, Advanced Lectures in Mathematics (ALM), vol. 21, pp. 225–258. Int. Press, Somerville (2012)

  27. Khoshkam, M., Skandalis, G.: Regular representation of groupoid \(C^*\)-algebras and applications to inverse semigroups. J. Reine Angew. Math. 546, 47–72 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Kondrat’ ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč 16, 209–292 (1967)

    MathSciNet  Google Scholar 

  29. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  30. Lauter, R.: Pseudodifferential analysis on conformally compact spaces. Mem. Am. Math. Soci. 163(777), xvi+92 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Lauter, R., Monthubert, B., Nistor, V.: Pseudodifferential analysis on continuous family groupoids. Doc. Math. 5, 625–655 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Mackenzie, K.: Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series, vol. 124. Cambridge University Press, Cambridge (1987)

  33. Mazzeo, R.: Elliptic theory of differential edge operators. I. Commun. Partial Differ. Equ. 16(10), 1615–1664 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Melrose, R.B.: The Atiyah–Patodi–Singer index theorem. Research Notes in Mathematics, vol. 4 . A K Peters, Ltd., Wellesley (1993)

    Book  MATH  Google Scholar 

  35. Melrose, R.B.: Geometric scattering theory. Stanford Lectures. Cambridge University Press, Cambridge (1995)

  36. Mougel, J., Prudhon, N.: Exhaustive families of representations of \(C^\ast \)-algebras associated with \(N\)-body Hamiltonians with asymptotically homogeneous interactions. C. R. Math. Acad. Sci. Paris 357(2), 200–204 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Măntoiu, M.: C*-algebraic spectral sets, twisted groupoids and operators (2018). arXiv e-prints, arXiv:1809.03347v2

  38. Muhly, P.S., Renault, J.N., Williams, D.P.: Equivalence and isomorphism for groupoid \(C^\ast \)-algebras. J. Oper. Theory 17(1), 3–22 (1987)

    MathSciNet  MATH  Google Scholar 

  39. Muhly, P.S., Renault, J.N., Williams, D.P.: Continuous-trace groupoid \(C^\ast \)-algebras. III. Trans. Am. Math. Soc. 348(9), 3621–3641 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Măntoiu, M.: \(C^\ast \)-algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators. J. Reine Angew. Math. 550, 211–229 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Măntoiu, M., Purice, R., Richard, S.: Spectral and propagation results for magnetic Schrödinger operators; a \(C^*\)-algebraic framework. J. Funct. Anal. 250(1), 42–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nistor, V., Prudhon, N.: Exhaustive families of representations and spectra of pseudodifferential operators. J. Oper. Theory 78(2), 247–279 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Nistor, V., Weinstein, A., Xu, P.: Pseudodifferential operators on differential groupoids. Pacific J. Math. 189(1), 117–152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Paterson, A.L.T.: Continuous family groupoids. Homol. Homotopy Appl. 2, 89–104 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Paterson, A.L.T.: The analytic index for proper, Lie groupoid actions. Groupoids in Analysis. Geometry, and Physics (Boulder, CO, 1999), Contemporary Mathematics, vol. 282, pp. 115–135. American Mathematical Society, Providence (2001)

  46. Rabinovich, V., Schulze, B.-W., Tarkhanov, N.: Boundary value problems in oscillating cuspidal wedges. Rocky Mt. J. Math. 34(4), 1399–1471 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-trace \(C^*\)-Algebras, Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  48. Renault, J.: A groupoid approach to \(C^{\ast } \)-algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980)

  49. Renault, J.: Induced representations and hypergroupoids. SIGMA Symmetry Integr. Geom. Methods Appl. 10:Paper 057,18 (2014)

  50. Rieffel, M.A.: Induced representations of \(C^{\ast } \)-algebras. Adv. Math. 13, 176–257 (1974)

    Article  MATH  Google Scholar 

  51. Schulze, B.-W.: Pseudo-Differential Operators on Manifolds with Singularities, Studies in Mathematics and its Applications, vol. 24. North-Holland Publishing Co., Amsterdam (1991)

    Google Scholar 

  52. Tu, J.-L.: Non-Hausdorff groupoids, proper actions and \(K\)-theory. Doc. Math. 9, 565–597 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Van Erp, E., Yuncken, R.: A groupoid approach to pseudodifferential operators (2015). arXiv e-prints, arXiv:1511.01041

  54. Van Erp, E., Yuncken, R.: On the tangent groupoid of a filtered manifold. Bull. Lond. Math. Soc. 49(6), 1000–1012 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vasy, A.: Propagation of singularities in many-body scattering. Ann. Sci. École Norm. Sup. (4) 34(3), 313–402 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Williams, D.P.: Crossed Products of \(C^\ast \)-algebras, Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence (2007)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Victor Nistor for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Côme.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Côme, R. The Fredholm Property for Groupoids is a Local Property. Results Math 74, 160 (2019). https://doi.org/10.1007/s00025-019-1084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1084-x

Mathematics Subject Classification

Keywords

Navigation