Skip to main content
Log in

Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Novel therapies are urgently needed to alleviate the current crisis of multiple drug-resistant infections. The bacterial signal transduction mechanisms, known as two-component systems (TCSs), are ideal targets of novel inhibitory molecules. Highly restricted to the bacterial world, TCSs control a diverse set of cellular functions, namely virulence, response to cell envelope stress, and drug efflux. Impaired regulation of any of these aspects could affect the susceptibility of bacterial pathogens to antibiotics, which highlights the potential of TCS as targets of antibiotic adjuvant therapies. Moreover, new high-density transposon mutagenesis methods have revealed the existence of TCSs required for growth and viability. Experimental validation of gene essentiality and phenotypic characterization of knockdown mutants indicate that essential TCSs regulate aspects of the cell envelope homeostasis in coordination with cell division. In this review, we describe essential TCSs, and their potentials as targets for antibacterial molecules. We also discuss methods for the identification of small molecules that inhibit TCSs and possible reasons why antibacterial molecules targeting essential TCSs have not yet reached clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abel P, zur Wiesch PA, Kouyos R, Abel S, Viechtbauer W, Bonhoeffer S (2014) Cycling empirical antibiotic therapy in hospitals: meta-analysis and models. PLoS Pathog 10(6):e1004225. doi:10.1371/journal.ppat.1004225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alves LA, Harth-Chu EN, Palma TH, Stipp RN, Mariano FS, Höfling JF, Abranches J, Mattos-Graner RO (2017) The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol Oral Microbiol. doi:10.1111/omi.12183

    PubMed  Google Scholar 

  • Baltrus DA, Amieva MR, Covacci A, Lowe TM, Merrell DS, Ottemann KM, Stein M, Salama NR, Guillemin K (2009) The complete genome sequence of Helicobacter pylori strain G27. J Bacteriol 191:447–448. doi:10.1128/JB.01416-08

    Article  CAS  PubMed  Google Scholar 

  • Baugh L, Gallagher LA, Patrapuvich R, Clifton MC, Gardberg AS, Edwards TE, Armour B, Begley DW, Dieterich SH, Dranow DM, Abendroth J, Fairman JW, Iii DF, Staker BL, Phan I, Gillespie A, Choi R, Nakazawa-Hewitt S, Nguyen MT, Napuli A, Barrett L, Buchko GW, Stacy R, Myler PJ, Stewart LJ, Manoil C, Voorhis WCV (2013) Combining functional and structural genomics to sample the essential Burkholderia structome. PLoS ONE 8:e53851. doi:10.1371/journal.pone.0053851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthier A, Oger F, Gheeraert C, Boulahtouf A, Le Guével R, Balaguer P, Staels B, Salbert G, Lefebvre P (2012) The novel antibacterial compound walrycin A induces human PXR transcriptional activity. Toxicol Sci Off J Soc Toxicol 127:225–235. doi:10.1093/toxsci/kfs073

    Article  CAS  Google Scholar 

  • Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65:180–200

    Article  CAS  PubMed  Google Scholar 

  • Blaskovich MAT, Butler MS, Cooper MA (2017) Polishing the tarnished silver bullet: the quest for new antibiotics. Essays Biochem 61:103–114. doi:10.1042/EBC20160077

    Article  PubMed  Google Scholar 

  • Bloodworth RA, Gislason AS, Cardona ST (2013) Burkholderia cenocepacia conditional growth mutant library created by random promoter replacement of essential genes. MicrobiologyOpen 2:243–258. doi:10.1002/mbo3.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretl DJ, Bigley TM, Terhune SS, Zahrt TC (2014) The MprB extracytoplasmic domain negatively regulates activation of the Mycobacterium tuberculosis MprAB two-component system. J Bacteriol 196:391–406. doi:10.1128/JB.01064-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breton YL, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, Shirtliff ME, El-Sayed NM, McIver KS (2015) Essential genes in the core genome of the human pathogen Streptococcus pyogenes. Sci Rep 5:09838. doi:10.1038/srep09838

    Article  Google Scholar 

  • Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343. doi:10.1038/nature17042

    Article  CAS  PubMed  Google Scholar 

  • Cangelosi GA, Do JS, Freeman R, Bennett JG, Semret M, Behr MA (2006) The two-component regulatory system mtrAB is required for morphotypic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 50:461–468. doi:10.1128/AAC.50.2.461-468.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Xiong Z, Liu K, Li S, Wang R, Wang X, Zhang Y, Wang H (2016) Transcriptional profiling of the two-component regulatory system VraSR in Staphylococcus aureus with low-level vancomycin resistance. Int J Antimicrob Agents 47:362–367. doi:10.1016/j.ijantimicag.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  • Cheng AT, Ottemann KM, Yildiz FH (2015) Vibrio cholerae response regulator VxrB controls colonization and regulates the type VI secretion system. PLoS Pathog 11:e1004933. doi:10.1371/journal.ppat.1004933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, Fero MJ, McAdams HH, Shapiro L (2011) The essential genome of a bacterium. Mol Syst Biol 7:528. doi:10.1038/msb.2011.58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christiansen MT, Kaas RS, Chaudhuri RR, Holmes MA, Hasman H, Aarestrup FM (2014) Genome-wide high-throughput screening to investigate essential genes involved in methicillin-resistant Staphylococcus aureus sequence type 398 survival. PLoS ONE 9:e89018. doi:10.1371/journal.pone.0089018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream M-A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. doi:10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  • Delaune A, Poupel O, Mallet A, Coic YM, Msadek T, Dubrac S (2011) Peptidoglycan crosslinking relaxation plays an important role in Staphylococcus aureus WalKR-dependent cell viability. PLoS ONE 6:e17054. doi:10.1371/journal.pone.0017054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • der Henst CV, Beaufay F, Mignolet J, Didembourg C, Colinet J, Hallet B, Letesson J-J, Bolle XD (2012) The histidine kinase PdhS controls cell cycle progression of the pathogenic Alphaproteobacterium Brucella abortus. J Bacteriol 194:5305–5314. doi:10.1128/JB.00699-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorr T, Alvarez L, Delgado F, Davis BM, Cava F, Waldor MK (2016) A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proc Natl Acad Sci U S A 113:404–409. doi:10.1073/pnas.1520333113

    Article  CAS  PubMed  Google Scholar 

  • Dubrac S, Msadek T (2004) Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 186:1175–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrac S, Boneca IG, Poupel O, Msadek T (2007) New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189:8257–8269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrac S, Bisicchia P, Devine KM, Msadek T (2008) A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70:1307–1322. doi:10.1111/j.1365-2958.2008.06483.x

    Article  CAS  PubMed  Google Scholar 

  • Duque C, Stipp RN, Wang B, Smith DJ, Höfling JF, Kuramitsu HK, Duncan MJ, Mattos-Graner RO (2011) Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun 79:786–796. doi:10.1128/IAI.00725-10

    Article  CAS  PubMed  Google Scholar 

  • East SP, Silver LL (2013) Multitarget ligands in antibacterial research: progress and opportunities. Expert Opin Drug Discov 8:143–156. doi:10.1517/17460441.2013.743991

    Article  CAS  PubMed  Google Scholar 

  • Eguchi Y, Okajima T, Tochio N, Inukai Y, Shimizu R, Ueda S, Shinya S, Kigawa T, Fukamizo T, Igarashi M, Utsumi R (2017) Angucycline antibiotic waldiomycin recognizes common structural motif conserved in bacterial histidine kinases. J Antibiot (Tokyo) 70:251–258. doi:10.1038/ja.2016.151

    Article  CAS  Google Scholar 

  • Fabret C, Hoch JA (1998) A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 180:6375–6383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhruzzaman M, Inukai Y, Yanagida Y, Kino H, Igarashi M, Eguchi Y, Utsumi R (2015) Study on in vivo effects of bacterial histidine kinase inhibitor, Waldiomycin, in Bacillus subtilis and Staphylococcus aureus. J Gen Appl Microbiol 61:177–184. doi:10.2323/jgam.61.177

    Article  CAS  PubMed  Google Scholar 

  • Farizano JV, de las Pescaretti M, López FE, Hsu FF, Delgado MA (2012) The PmrAB system-inducing conditions control both lipid A remodeling and O-antigen length distribution, influencing the Salmonella Typhimurium-host interactions. J Biol Chem 287:38778–38789. doi:10.1074/jbc.M112.397414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci 98:4658–4663. doi:10.1073/pnas.071559398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, Jagannath C, Madiraju MVVS, Rajagopalan M (2006) Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 60:643–657. doi:10.1111/j.1365-2958.2006.05137.x

    Article  CAS  PubMed  Google Scholar 

  • Foster JE, Sheng Q, McClain JR, Bures M, Nicas TI, Henry K, Winkler ME, Gilmour R (2004) Kinetic and mechanistic analyses of new classes of inhibitors of two-component signal transduction systems using a coupled assay containing HpkA-DrrA from Thermotoga maritima. Microbiol Read Engl 150:885–896. doi:10.1099/mic.0.26824-0

    Article  CAS  Google Scholar 

  • Fritsch F, Mauder N, Williams T, Weiser J, Oberle M, Beier D (2011) The cell envelope stress response mediated by the LiaFSRLm three-component system of Listeria monocytogenes is controlled via the phosphatase activity of the bifunctional histidine kinase LiaSLm. Microbiology 157:373–386. doi:10.1099/mic.0.044776-0

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi K, Kasahara Y, Asai K, Kobayashi K, Moriya S, Ogasawara N (2000) The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiol Read Engl 146(Pt 7):1573–1583. doi:10.1099/00221287-146-7-1573

    Article  CAS  Google Scholar 

  • Fukushima T, Furihata I, Emmins R, Daniel RA, Hoch JA, Szurmant H (2011) A role for the essential YycG sensor histidine kinase in sensing cell division. Mol Microbiol 79:503–522. doi:10.1111/j.1365-2958.2010.07464.x

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Lara-Tejero M, Lefebre M, Goodman AL, Galán JE (2014) Novel components of the flagellar system in Epsilonproteobacteria. mBio 5:e01349. doi:10.1128/mBio.01349-14

    PubMed  PubMed Central  Google Scholar 

  • Gilmour R, Foster JE, Sheng Q, McClain JR, Riley A, Sun P-M, Ng W-L, Yan D, Nicas TI, Henry K, Winkler ME (2005) New class of competitive inhibitor of bacterial histidine kinases. J Bacteriol 187:8196–8200. doi:10.1128/JB.187.23.8196-8200.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gislason AS, Choy M, Bloodworth RAM, Qu W, Stietz MS, Li X, Zhang C, Cardona ST (2017) Competitive growth enhances conditional growth mutant sensitivity to antibiotics and exposes a two-component system as an emerging antibacterial target in Burkholderia cenocepacia. Antimicrob Agents Chemother. doi:10.1128/AAC.00790-16

    PubMed  Google Scholar 

  • Golding GR, Bryden L, Levett PN, McDonald RR, Wong A, Graham MR, Tyler S, Domselaar GV, Mabon P, Kent H, Butaye P, Smith TC, Kadlec K, Schwarz S, Weese SJ, Mulvey MR (2012) Whole-genome sequence of livestock-associated ST398 methicillin-resistant Staphylococcus aureus isolated from humans in Canada. J Bacteriol 194:6627–6628. doi:10.1128/JB.01680-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh Y, Doi A, Furuta E, Dubrac S, Ishizaki Y, Okada M, Igarashi M, Misawa N, Yoshikawa H, Okajima T, Msadek T, Utsumi R (2010a) Novel antibacterial compounds specifically targeting the essential WalR response regulator. J Antibiot (Tokyo) 63:127–134. doi:10.1038/ja.2010.4

    Article  CAS  Google Scholar 

  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010b) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13:232–239. doi:10.1016/j.mib.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk S, Bygebjerg-Hove I, Bonde M, Nielsen PK, Nguyen TH, Gravesen A, Kallipolitis BH (2008) The two-component system CesRK controls the transcriptional induction of cell envelope-related genes in Listeria monocytogenes in response to cell wall-acting antibiotics. J Bacteriol 190:4772–4776. doi:10.1128/JB.00015-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero J (1984) Closantel: a review of its antiparasitic activity. Prev Vet Med 2:317–327. doi:10.1016/0167-5877(84)90075-8

    Article  Google Scholar 

  • Hallez R, Mignolet J, Mullem VV, Wery M, Vandenhaute J, Letesson J-J, Jacobs-Wagner C, Bolle XD (2007) The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. EMBO J 26:1444–1455. doi:10.1038/sj.emboj.7601577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock LE, Perego M (2004) Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 186:7951–7958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl H-G, Bierbaum G, Schneider T, Grein F (2017) The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int J Med Microbiol IJMM 307:1–10. doi:10.1016/j.ijmm.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  • Hecht GB, Lane T, Ohta N, Sommer JM, Newton A (1995) An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J 14:3915–3924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilliard JJ, Goldschmidt RM, Licata L, Baum EZ, Bush K (1999) Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother 43:1693–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hlasta DJ, Demers JP, Foleno BD, Fraga-Spano SA, Guan J, Hilliard JJ, Macielag MJ, Ohemeng KA, Sheppard CM, Sui Z, Webb GC, Weidner-Wells MA, Werblood H, Barrett JF (1998) Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: pharmacophore identification based on the screening hit closantel. Bioorg Med Chem Lett 8:1923–1928. doi:10.1016/S0960-894X(98)00326-6

    Article  CAS  PubMed  Google Scholar 

  • Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PC, Parkhill J (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101:14240–14245. doi:10.1073/pnas.0403302101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong HJ, Hutchings MI, Buttner MJ, Biotechnology and Biological Sciences Research Council, UK (2008) Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol 631:200–213

    Article  CAS  PubMed  Google Scholar 

  • Hooven TA, Catomeris AJ, Akabas LH, Randis TM, Maskell DJ, Peters SE, Ott S, Santana-Cruz I, Tallon LJ, Tettelin H, Ratner AJ (2016) The essential genome of Streptococcus agalactiae. BMC Genom. doi:10.1186/s12864-016-2741-z

    Google Scholar 

  • Howden BP, McEvoy CRE, Allen DL, Chua K, Gao W, Harrison PF, Bell J, Coombs G, Bennett-Wood V, Porter JL, Robins-Browne R, Davies JK, Seemann T, Stinear TP (2011) Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 7:e1002359. doi:10.1371/journal.ppat.1002359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Nasr M, Kim Y, Matthews HR (1992) Genistein inhibits protein histidine kinase. J Biol Chem 267:15511–15515

    CAS  PubMed  Google Scholar 

  • Hutchings MI, Hong H-J, Buttner MJ (2006) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59:923–935. doi:10.1111/j.1365-2958.2005.04953.x

    Article  CAS  PubMed  Google Scholar 

  • Igarashi M, Watanabe T, Hashida T, Umekita M, Hatano M, Yanagida Y, Kino H, Kimura T, Kinoshita N, Inoue K, Sawa R, Nishimura Y, Utsumi R, Nomoto A (2013) Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J Antibiot (Tokyo) 66:459–464. doi:10.1038/ja.2013.33

    Article  CAS  Google Scholar 

  • Jacobs C, Domian IJ, Maddock JR, Shapiro L (1999) Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97:111–120

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Chen PJ, Qin G, Deng X, Hao Z, Wawrzak Z, Yeo W-S, Quang JW, Cho H, Luo G-Z, Weng X, You Q, Luan C-H, Yang X, Bae T, Yu K, Jiang H, He C (2016) Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nat Commun 7:11000. doi:10.1038/ncomms11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Q, Chen PJ, Qin G, Deng X, Hao Z, Wawrzak Z, Yeo W-S, Quang JW, Cho H, Luo G-Z, Weng X, You Q, Luan C-H, Yang X, Bae T, Yu K, Jiang H, He C (2017) Retraction: structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nat Commun 8:14331. doi:10.1038/ncomms14331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallipolitis BH, Ingmer H (2001) Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol Lett 204:111–115

    Article  CAS  PubMed  Google Scholar 

  • Khatiwara A, Jiang T, Sung S-S, Dawoud T, Kim JN, Bhattacharya D, Kim H-B, Ricke SC, Kwon YM (2012) Genome scanning for conditionally essential genes in Salmonella enterica serotype Typhimurium. Appl Environ Microbiol 78:3098–3107. doi:10.1128/AEM.06865-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Fricke N, Conery AL, Fuchs BB, Rajamuthiah R, Jayamani E, Vlahovska PM, Ausubel FM, Mylonakis E (2016) NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. Future Med Chem 8:257–269. doi:10.4155/fmc.15.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT (2012) Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genom 13:578. doi:10.1186/1471-2164-13-578

    Article  CAS  Google Scholar 

  • Koteva K, Hong H-J, Wang XD, Nazi I, Hughes D, Naldrett MJ, Buttner MJ, Wright GD (2010) A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol 6:327–329. doi:10.1038/nchembio.350

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821

    Article  CAS  PubMed  Google Scholar 

  • Kwun MJ, Novotna G, Hesketh AR, Hill L, Hong H-J (2013) In vivo studies suggest that induction of VanS-dependent vancomycin resistance requires binding of the drug to D-Ala-D-Ala termini in the peptidoglycan cell wall. Antimicrob Agents Chemother 57:4470–4480. doi:10.1128/AAC.00523-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange R, Wagner C, de Saizieu A, Flint N, Molnos J, Stieger M, Caspers P, Kamber M, Keck W, Amrein KE (1999) Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237:223–234

    Article  CAS  PubMed  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JLT, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61. doi:10.1038/nbt923

    Article  CAS  PubMed  Google Scholar 

  • Laub MT, Chen SL, Shapiro L, McAdams HH (2002) Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 99:4632–4637. doi:10.1073/pnas.062065699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang Q, Zhang H, Yang M, Khan MI, Zhou X (2016) Sensor histidine kinase is a beta-lactam receptor and induces resistance to beta-lactam antibiotics. Proc Natl Acad Sci U S A 113:1648–1653. doi:10.1073/pnas.1520300113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhao D, Chang J, Yan L, Zhao F, Wu Y, Xu T, Gong T, Chen L, He N, Wu Y, Han S, Qu D (2014) Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Appl Microbiol Biotechnol 98:6003–6013. doi:10.1007/s00253-014-5685-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Z, Zhao D, Chang J, Liu H, Wang X, Zheng J, Huang R, Lin Z, Shang Y, Ye L, Wu Y, Han S, Qu D (2017) Anti-bacterial and anti-biofilm evaluation of thiazolopyrimidinone derivatives targeting the histidine kinase YycG protein of Staphylococcus epidermidis. Front Microbiol 8:549. doi:10.3389/fmicb.2017.00549

    PubMed  PubMed Central  Google Scholar 

  • Macielag MJ, Demers JP, Fraga-Spano SA, Hlasta DJ, Johnson SG, Kanojia RM, Russell RK, Sui Z, Weidner-Wells MA, Werblood H, Foleno BD, Goldschmidt RM, Loeloff MJ, Webb GC, Barrett JF (1998) Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J Med Chem 41:2939–2945. doi:10.1021/jm9803572

    Article  CAS  PubMed  Google Scholar 

  • Mansilla MC, de Mendoza D (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–235. doi:10.1007/s00203-005-0759-8

    Article  CAS  PubMed  Google Scholar 

  • Margot P, Wahlen M, Gholamhoseinian A, Piggot P, Karamata D, Gholamhuseinian A (1998) The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol 180:749–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin PK, Li T, Sun D, Biek DP, Schmid MB (1999) Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 181:3666–3673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez JL, Rojo F (2011) Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev 35:768–789. doi:10.1111/j.1574-6976.2011.00282.x

    Article  CAS  PubMed  Google Scholar 

  • Martínez B, Zomer AL, Rodríguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the Lactococcal two-component system CesSR. Mol Microbiol 64:473–486. doi:10.1111/j.1365-2958.2007.05668.x

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Janda KD (2002) Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem 10:855–867

    Article  CAS  PubMed  Google Scholar 

  • Monk IR, Howden BP, Seemann T, Stinear TP (2017) Correspondence: spontaneous secondary mutations confound analysis of the essential two-component system WalKR in Staphylococcus aureus. Nat Commun 8:14403. doi:10.1038/ncomms14403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moule MG, Hemsley CM, Seet Q, Guerra-Assunção JA, Lim J, Sarkar-Tyson M, Clark TG, Tan PBO, Titball RW, Cuccui J, Wren BW (2014) Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. mBio 5:e00926. doi:10.1128/mBio00926-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ (2008) Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother 52:980–990. doi:10.1128/AAC.01121-07

    Article  CAS  PubMed  Google Scholar 

  • Ng W-L, Robertson GT, Kazmierczak KM, Zhao J, Gilmour R, Winkler ME (2003) Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 50:1647–1663

    Article  CAS  PubMed  Google Scholar 

  • Ng W-L, Kazmierczak KM, Winkler ME (2004) Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53:1161–1175. doi:10.1111/j.1365-2958.2004.04196.x

    Article  CAS  PubMed  Google Scholar 

  • Okada A, Igarashi M, Okajima T, Kinoshita N, Umekita M, Sawa R, Inoue K, Watanabe T, Doi A, Martin A, Quinn J, Nishimura Y, Utsumi R (2010) Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth. J Antibiot (Tokyo) 63:89–94. doi:10.1038/ja.2009.128

    Article  CAS  Google Scholar 

  • Parish T (2014) Two-component regulatory systems of Mycobacteria. Microbiol Spectr 2:209–223. doi:10.1128/microbiolspec.MGM2-0010-2013

    Article  CAS  Google Scholar 

  • Pechter KB, Gallagher L, Pyles H, Manoil CS, Harwood CS (2016) Essential genome of the metabolically versatile Alphaproteobacterium Rhodopseudomonas palustris. J Bacteriol 198:867–876. doi:10.1128/JB.00771-15

    Article  CAS  PubMed Central  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Steffens MBR, Weiss VA, Pereira LFP, Almeida MIM, Alves LR, Marin A, Araujo LM, Balsanelli E, Baura VA, Chubatsu LS, Faoro H, Favetti A, Friedermann G, Glienke C, Karp S, Kava-Cordeiro V, Raittz RT, Ramos HJO, Ribeiro EMSF, Rigo LU, Rocha SN, Schwab S, Silva AG, Souza EM, Tadra-Sfeir MZ, Torres RA, Dabul ANG, Soares MAM, Gasques LS, Gimenes CCT, Valle JS, Ciferri RR, Correa LC, Murace NK, Pamphile JA, Patussi EV, Prioli AJ, Prioli SMA, Rocha CLMSC, Arantes OMN, Furlaneto MC, Godoy LP, Oliveira CEC, Satori D, Vilas-Boas LA, Watanabe MAE, Dambros BP, Guerra MP, Mathioni SM, Santos KL, Steindel M, Vernal J, Barcellos FG, Campo RJ, Chueire LMO, Nicolás MF, Pereira-Ferrari L, da Silva JL, Gioppo NMR, Margarido VP, Menck-Soares MA, Pinto FGS, de Simão RCG, Takahashi EK, Yates MG, Souza EM (2011) Genome of Herbaspirillum seropedicae Strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064. doi:10.1371/journal.pgen.1002064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry BJ, Akter MS, Yost CK (2016) The use of transposon insertion sequencing to interrogate the core functional genome of the legume symbiont Rhizobium leguminosarum. Front Microbiol 7:1873. doi:10.3389/fmicb.2016.01873

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips-Jones MK, Channell G, Kelsall CJ, Hughes CS, Ashcroft AE, Patching SG, Dinu V, Gillis RB, Adams GG, Harding SE (2017) Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin. Sci Rep 7:46180. doi:10.1038/srep46180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plocinska R, Purushotham G, Sarva K, Vadrevu IS, Pandeeti EVP, Arora N, Plocinski P, Madiraju MV, Rajagopalan M (2012) Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression. J Biol Chem 287:23887–23899. doi:10.1074/jbc.M112.346544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J (1997) Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev 11:1169–1182

    Article  CAS  PubMed  Google Scholar 

  • Powell JE, Leonard SP, Kwong WK, Engel P, Moran NA (2016) Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont. Proc Natl Acad Sci 113:13887–13892. doi:10.1073/pnas.1610856113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purushotham G, Sarva KB, Blaszczyk E, Rajagopalan M, Madiraju MV (2015) Mycobacterium tuberculosis oriC sequestration by MtrA response regulator. Mol Microbiol 98:586–604. doi:10.1111/mmi.13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quon KC, Marczynski GT, Shapiro L (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93. doi:10.1016/S0092-8674(00)80995-2

    Article  CAS  PubMed  Google Scholar 

  • Raivio TL, Silhavy TJ (1997) Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 179:7724–7733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopalan M, Dziedzic R, Al Zayer M, Stankowska D, Ouimet M-C, Bastedo DP, Marczynski GT, Madiraju MV (2010) Mycobacterium tuberculosis origin of replication and the promoter for immunodominant secreted antigen 85B are the targets of MtrA, the essential response regulator. J Biol Chem 285:15816–15827. doi:10.1074/jbc.M109.040097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remmele CW, Xian Y, Albrecht M, Faulstich M, Fraunholz M, Heinrichs E, Dittrich MT, Müller T, Reinhardt R, Rudel T (2014) Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucl Acids Res 42:10579–10595. doi:10.1093/nar/gku762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roemer T, Boone C (2013) Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9:222–231. doi:10.1038/nchembio.1205

    Article  CAS  PubMed  Google Scholar 

  • Rosconi F, de Vries SPW, Baig A, Fabiano E, Grant AJ (2016) Essential genes for in vitro growth of the endophyte Herbaspirillum seropedicae SmR1 revealed by transposon insertion sequencing. Appl Environ Microbiol AEM. 82:6664–6671. doi:10.1128/AEM.02281-16

    Article  CAS  Google Scholar 

  • Roychoudhury S, Zielinski NA, Ninfa AJ, Allen NE, Jungheim LN, Nicas TI, Chakrabarty AM (1993) Inhibitors of two-component signal transduction systems: inhibition of alginate gene activation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 90:965–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186:7926–7935. doi:10.1128/JB.186.23.7926-7935.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senadheera MD, Guggenheim B, Spatafora GA, Huang Y-CC, Choi J, Hung DCI, Treglown JS, Goodman SD, Ellen RP, Cvitkovitch DG (2005) A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187:4064–4076. doi:10.1128/JB.187.12.4064-4076.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah IM, Dworkin J (2010) Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol Microbiol 75:1232–1243. doi:10.1111/j.1365-2958.2010.07046.x

    Article  CAS  PubMed  Google Scholar 

  • Sham L-T, Barendt SM, Kopecky KE, Winkler ME (2011) Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci U S A 108:E1061–1069. doi:10.1073/pnas.1108323108

    Article  PubMed  PubMed Central  Google Scholar 

  • Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SB, Young K, Silver LL (2017) What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol 133:63–73. doi:10.1016/j.bcp.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  • Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3:e334. doi:10.1371/journal.pbio.0030334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephenson K, Hoch JA (2002a) Histidine kinase-mediated signal transduction systems of pathogenic microorganisms as targets for therapeutic intervention. Curr Drug Targets Infect Disord 2:235–246

    Article  CAS  PubMed  Google Scholar 

  • Stephenson K, Hoch JA (2002b) Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol 2:507–512

    Article  CAS  PubMed  Google Scholar 

  • Stephenson K, Hoch JA (2004) Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem 11:765–773

    Article  CAS  PubMed  Google Scholar 

  • Stephenson K, Yamaguchi Y, Hoch JA (2000) The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J Biol Chem 275:38900–38904. doi:10.1074/jbc.M006633200

    Article  CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215. doi:10.1146/annurev.biochem.69.1.183

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Yang Y, Xue T, Sun B (2013) Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus NCTC8325. BMC Microbiol 13:286. doi:10.1186/1471-2180-13-286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, Gaynor EC (2009) The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71:253–272. doi:10.1111/j.1365-2958.2008.06534.x

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Ros IM, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955. doi:10.1073/pnas.0506758102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomomori C, Tanaka T, Dutta R, Park H, Saha SK, Zhu Y, Ishima R, Liu D, Tong KI, Kurokawa H, Qian H, Inouye M, Ikura M (1999) Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Mol Biol 6:729–734. doi:10.1038/11495

    Article  CAS  Google Scholar 

  • Tran TT, Panesso D, Gao H, Roh JH, Munita JM, Reyes J, Diaz L, Lobos EA, Shamoo Y, Mishra NN, Bayer AS, Murray BE, Weinstock GM, Arias CA (2013) Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycin-resistant variant arising during therapy. Antimicrob Agents Chemother 57:261–268. doi:10.1128/AAC.01454-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TT, Miller WR, Shamoo Y, Arias CA (2016) Targeting cell membrane adaptation as a novel antimicrobial strategy. Curr Opin Microbiol 33:91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767–772. doi:10.1038/nmeth.1377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velikova N, Fulle S, Manso AS, Mechkarska M, Finn P, Conlon JM, Oggioni MR, Wells JM, Marina A (2016) Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Sci Rep 6:26085. doi:10.1038/srep26085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W (2008) Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32:287–306

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ozer EA, Mandel MJ, Hauser AR (2014) Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio 5:e01163. doi:10.1128/mBio01163-14

    PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Okada A, Gotoh Y, Utsumi R (2008) Inhibitors targeting two-component signal transduction. Adv Exp Med Biol 631:229–236. doi:10.1007/978-0-387-78885-2_16

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Igarashi M, Okajima T, Ishii E, Kino H, Hatano M, Sawa R, Umekita M, Kimura T, Okamoto S, Eguchi Y, Akamatsu Y, Utsumi R (2012) Isolation and characterization of signermycin B, an antibiotic that targets the dimerization domain of histidine kinase WalK. Antimicrob Agents Chemother 56:3657–3663. doi:10.1128/AAC.06467-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber BS, Ly PM, Irwin JN, Pukatzki S, Feldman MF (2015) A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A 112:9442–9447. doi:10.1073/pnas.1502966112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376

    Article  CAS  PubMed  Google Scholar 

  • Worthington RJ, Blackledge MS, Melander C (2013) Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 5:1265–1284. doi:10.4155/fmc.13.58

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Furuhata K, Fukushima T, Yamamoto H, Sekiguchi J (2004) Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. J Biosci Bioeng 98:174–181

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Kitayama T, Ishida N, Watanabe T, Tanabe H, Takatani M, Okamoto T, Utsumi R (2000) Identification and characterization of a potent antibacterial agent, NH125 against drug-resistant bacteria. Biosci Biotechnol Biochem 64:919–923. doi:10.1271/bbb.64.919

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Kitayama T, Minagawa S, Watanabe T, Sawada S, Okamoto T, Utsumi R (2001) Antibacterial agents that inhibit histidine protein kinase YycG of Bacillus subtilis. Biosci Biotechnol Biochem 65:2306–2310

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Yu C, Yang J, Ji Y (2011) The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus. J Bacteriol 193:1799–1805. doi:10.1128/JB.01511-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Reyes SG, Tsuda S, Horinouchi T, Furusawa C, Cronin L (2017) Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro. Nat Commun. doi:10.1038/ncomms15589

    Google Scholar 

  • Young JPW, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. doi:10.1186/gb-2006-7-4-r34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahrt TC, Deretic V (2000) An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 182:3832–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, Rubin EJ (2012) Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 8:e1002946. doi:10.1371/journal.ppat.1002946

    Article  PubMed  PubMed Central  Google Scholar 

  • Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428:3752–3775. doi:10.1016/j.jmb.2016.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Silvia Cardona’s research is supported by operating grants from the Natural Sciences and Engineering Research Council (NSERC) discovery grant program, and Cystic Fibrosis Canada (CFC). Matthew Choy is supported by the Graduate Enhancement of Tri-Council Stipends from the University of Manitoba. Andrew Hogan holds a Canada Graduate Scholarship – Master’s from the Canadian Institute of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia T. Cardona.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardona, S.T., Choy, M. & Hogan, A.M. Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies. J Membrane Biol 251, 75–89 (2018). https://doi.org/10.1007/s00232-017-9995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9995-5

Keywords

Navigation