Skip to main content
Log in

An In Vitro Study of the Antioxidant and Antihemolytic Properties of Buddleja globosa (Matico)

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The antioxidant and antihemolytic properties contained in the leaves of Buddleja globosa (B. globosa), also known as “Matico,” were determined. Aqueous extracts of leaves were assayed in human erythrocytes and molecular models of its membrane. The latter were bilayers built-up of lipids located in the outer and inner leaflets of the erythrocyte membrane. Observations by scanning electron microscopy showed that the extract altered the morphology of erythrocytes inducing the formation of crenated echinocytes. This result implied that the extract components were inserted into the outer leaflet of the cell membrane. This conclusion was confirmed by experiments carried out by fluorescence spectroscopy of red cell membranes and vesicles (LUV) of dimyristoylphosphatidylcholine (DMPC) and by X-ray diffraction of DMPC and dimyristoylphosphatidylethanolamine bilayers. Human erythrocytes were in vitro exposed to HClO, which is a natural powerful oxidant. Results demonstrated that low concentrations of B. globosa aqueous extract neutralized the harmful capacity of HClO. Hemolysis experiments also showed that the extract in very low concentrations reduced hemolysis induced by HClO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Buddleja globosa :

B. globosa

DMPC:

Dimyristoylphosphatidylcholine

DMPE:

Dimyristoylphosphatidylethanolamine

SEM:

Scanning electron microscopy

GAE:

Gallic acid equivalents

RBCS:

Red blood cell suspension

ORAC:

Oxygen radical absorbance capacity

IUM:

Isolated unsealed human erythrocytes

LUV:

Large unilamellar vesicles

GP:

Generalized polarization

r:

Fluorescence anisotropy

AAPH:

2,2′-Azobis(2-amidino-propane)dihydrochloride

References

  • Abuja PM, Alvertini R (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta 306:1–17

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Nair MG, Strasburg M (1998) Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 24:1355–1360

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373:102–109

    Article  CAS  PubMed  Google Scholar 

  • Backhouse N, Rosales L, Apablaza C, Goïty L, Erazo S, Negrete R, Theodoluz C, Rodríguez J, Delporte C (2008) Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae. J Etnopharmacol 116:263–269

    Article  CAS  Google Scholar 

  • Battistelli M, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M, Gobbi P (2005) Rhodiola rosea as antioxidant in red blood cells: ultrastructural and hemolytical behavior. Eur J Histochem 49:243–254

    CAS  PubMed  Google Scholar 

  • Beutler E (1975) Red cell metabolism. A manual of biochemical methods. Grune & Straton, New York

    Google Scholar 

  • Boon JM, Smith BD (2002) Chemical control of phospholipid distribution across bilayer membranes. Med Res Rev 22:251–281

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315

    CAS  PubMed  Google Scholar 

  • Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antoxidants. Free Radic Biol Med 14:303–311

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Verdon CP, Wu AH, Wang H, Prior RL (1995) Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem 41:1738–1744

    CAS  PubMed  Google Scholar 

  • Carr AC, Vissers MCM, Domigan NM, Witerbourn CC (1997) Modification of red cell membrane lipids by hypochlorous acid and hemolysis by preformed lipid clorohydrins. Redox Rep 3:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Chaudhuri S, Banerjee A, Basu K, Sengupta B, Sengupta PK (2007) Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. Int J Biol Macromol 41:42–48

    Article  CAS  PubMed  Google Scholar 

  • Devaux PF, Zachawsky A (1994) Maintenance and consequences of membrane phospholipids asymmetry. Chem Phys Lipids 73:107–120

    Article  CAS  Google Scholar 

  • Garg HS, Bhandari SPS, Tripathi SC, Patnaik GK, Puri A, Saxena R, Saxena RP (1994) Antihepatotoxic and immunostimulant properties of iridoid glycosides of Scrophularia koelzii. Phytother Res 8:224–228

    Article  CAS  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Hawkins CL, Davies MJ (1998) Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. J Biochem 332:617–625

    Article  CAS  Google Scholar 

  • Houghton PJ, Hylands PJ, Mensah AY, Hensel A, Deters AM (2005) In vitro tests of ethnopharmacological investigations: wound healing as an example. J Ethnopharmacol 100:100–107

    Article  CAS  PubMed  Google Scholar 

  • Houghton PJ, Mensah AY, Iessa N, Hong LY (2003) Terpenoids in Buddleja: relevance to chemosystematics, chemical ecology and biological activity. Phytochemistry 64:385–393

    Article  CAS  PubMed  Google Scholar 

  • Kajiya K, Kumazawa S, Nakayama T (2002) Effects of eternal factors on the interaction of tea catequins with lipid bilayers. Biosci Biotechnol Biochem 66:2330–2335

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Yang Y, Cheng L, Zhong G-Y (2013) Characterization of polyphenolic metabolites in grape hybrids. Vitis 52:51–59

    CAS  Google Scholar 

  • Lim G, Wortis M, Mukhopadhyay R (2002) Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc Natl Acad Sci USA 99:16766–16769

    Article  Google Scholar 

  • Martínez V, Mitjans M, Vinardell MP (2014) Cytoprotective effects of polyphenols against oxidative damage. In: Watson RR, Preedy VR, Zibadi Sh (eds) Polyphenols in human health and disease, ch. 22. Elsevier, Amsterdam, pp 275–288

    Chapter  Google Scholar 

  • Mensah AY, Houghton PJ, Bloomfield S, Vlietinck A, Vanden Berghe D (2000) Known and novel terpenes from Buddleja globosa displaying selective antifungal activity against dermatophytes. J Nat Prod 63:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Morris JC (1966) The acid ionisation of HOCl from 5 degree to 35 degree. J Phys Chem 70:3798–3805

    Article  CAS  Google Scholar 

  • Movileanu L, Neagoe I, Flonta ML (2000) Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers. Int J Pharm 205:135–146

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Kawagoe M, Yoshimura M, Arata H, Minamikawa T, Nakamura M, Matsumoto A (2000) Differential effects of flavonoid quercetin on oxidative damages induced by hydrophilic and lipophilic radical generators in hepatic lysosomal fractions of mice. J Health Sci 46:509–512

    Article  CAS  Google Scholar 

  • Nakamura T, Inoue K, Nojima S, Sankawa U, Shoji J, Kawasaki T, Shibata S (1979) Interaction of saponins with red blood cells as well as with the phosphatidylcholine liposomal membranes. J Pharm Dyn 2:374–382

    Article  CAS  Google Scholar 

  • Ollila F, Halling K, Vuorela P, Vuorela H, Slotte JP (2002) Characterization of flavonoid–biomembrane interactions. Arch Biochem Biophys 399:103–108

    Article  CAS  PubMed  Google Scholar 

  • Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG (2005) Flavonoid–membrane interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol 12:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlikowska-Pawlega B, Gruszecki WI, Misiak LE, Gawron A (2003) The study of the quercetin action on human erythrocyte membranes. Biochem Pharmacol 66:605–612

    Article  CAS  PubMed  Google Scholar 

  • Pham-Huy LA, He H, Pham-Huy Ch (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Kalva S, Yerramilli A, Mamidi S (2011) Free radicals and tissue damage: role of antioxidants. Free Radic Antioxid 1:2–7

    CAS  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486

    Article  CAS  PubMed  Google Scholar 

  • Sak K (2014) Dependence of DPPH radical scavenging activity of dietary flavonoid quercetin on reaction environment. Mini Rev Med Chem 14:494–504

    Article  CAS  PubMed  Google Scholar 

  • Schraufstatter IU, Browne K, Harris A, Hyslop PA, Jackson JH, Quehenberger O, Cochrane CG (1990) Mechanisms of hypochlorite injury of target cells. J Clin Invest 85:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug–erythrocyte induced interactions. Proc Natl Acad Sci USA 71:4457–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagent. Am J Enol Vitic 16:144–148

    CAS  Google Scholar 

  • Suwalsky M (1996) Phospholipid bilayers. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC, Boca Raton, pp 5073–5078

    Google Scholar 

  • Suwalsky M, Orellana P, Avello M, Villena F, Sotomayor CP (2006) Human erythrocytes are affected in vitro by extracts of Ugni molinae leaves. Food Chem Toxicol 44:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M, Orellana P, Avello M, Villena F (2007) Protective effect of Ugni molinae Turcz against oxidative damage of human erythrocytes. Food Chem Toxicol 45:130–135

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M, Vargas P, Avello M, Villena F, Sotomayor CP (2008) Human erythrocytes are affected in vitro by extracts of Aristotelia chilensis (Maqui) leaves. Int J Pharm 363:85–90

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M, Oyarce K, Avello M, Villena F, Sotomayor CP (2009) Human erythrocytes and molecular models are affected in vitro by Balbisia peduncularis (Amancay) extracts. Chem Biol Interact 179:413–418

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M, Avello M, Obreque J, Villena F, Szymanska R, Stojakowska A, Strzalka K (2015) Protective effect of Philesia magellanica (Coicopihue) from Chilean Patagonia against oxidative damage. J Chil Chem Soc 60:2935–2939

    Article  CAS  Google Scholar 

  • Suwalsky M, Ramírez P, Avello M, Villena F, Gallardo MJ, Barriga A, Manrique-Moreno M (2016) Morphological effects and antioxidant capacity of Solanum crispum (Natre) assayed on human erythrocytes. J Membr Biol 249:349–361

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi T, Fliss H (1994) Hypochlorous acid and chloramines increase endothelial permeability: possible involvement of cellular zinc. Am J Physiol 267:1597–1607

    Google Scholar 

  • Terao J, Piskula M, Yao Q (1994) Protective effect of epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch Biochem Biophys 308:278–284

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya H (2001) Stereospecificity in membrane effects of catechins. Chem Biol Interact 134:41–54

    Article  CAS  PubMed  Google Scholar 

  • Vegliolu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agr Food Chem 46:4113–4117

    Article  Google Scholar 

  • Vissers MCM, Winterbourn CC (1995) Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid. Biochem J 307:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vissers MC, Carr AC, Chapman AL (1998) Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis. Biochem J 330:131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 54:4026–4037

    Article  Google Scholar 

  • Xiao X, Wang X, Gui X, Chen L, Huang B (2016) Natural flavonoids as promising analgesic candidates: a systematic review. Chem Biodivers 13:1427–1440

    Article  CAS  PubMed  Google Scholar 

  • Zavodnik IB, Lapshina EA, Zavodnik LB, Bartosz G, Soszynski M, Bryszewska M (2001) Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radic Biol Med 30:363–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. Avello and Fernando Neira for their technical assistance. This work was supported by a FONDECYT Grant (1090041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Suwalsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwalsky, M., Duguet, J. & Speisky, H. An In Vitro Study of the Antioxidant and Antihemolytic Properties of Buddleja globosa (Matico). J Membrane Biol 250, 239–248 (2017). https://doi.org/10.1007/s00232-017-9955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9955-0

Keywords

Navigation