Skip to main content
Log in

Characterisation of the DAACS Family Escherichia coli Glutamate/Aspartate-Proton Symporter GltP Using Computational, Chemical, Biochemical and Biophysical Methods

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Escherichia coli glutamate/aspartate-proton symporter GltP is a member of the Dicarboxylate/Amino Acid:Cation Symporter family of secondary active transport proteins. A range of computational, chemical, biochemical and biophysical methods characterised evolutionary relationships, structural features, substrate binding affinities and transport kinetics of wild-type and mutant forms of GltP. Sequence alignments and phylogenetic analysis revealed close homologies of GltP with human glutamate transporters involved in neurotransmission, neutral amino acid transporters and with the archaeal aspartate transporter GltPh. Topology predictions and comparisons with the crystal structure of GltPh were consistent with eight transmembrane-spanning α-helices and two hairpin re-entrant loops in GltP. Amplified expression of recombinant GltP with C-terminal affinity tags was achieved at 10% of total membrane protein in E. coli and purification to homogeneity with a yield of 0.8 mg/litre. Binding of substrates to GltP in native inner membranes and to purified protein solubilised in detergent was observed and quantified using solid-state NMR and fluorescence spectroscopy, respectively. A homology model of GltP docked with L-glutamate identified a putative binding site and residues predicted to interact with substrate. Sequence alignments identified further highly conserved residues predicted to have essential roles in GltP function. Residues were investigated by measuring transport activities, kinetics and response to thiol-specific reagents in 42 site-specific mutants compared with cysteine-less GltP (C256A) having an apparent affinity of initial rate transport (K m) for 3H-L-glutamate of 22.6 ± 5.5 μM in energised E. coli cells. This confirmed GltP residues involved in substrate binding and transport, especially in transmembrane helices VII and VIII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akyuz N, Altman RB, Blanchard SC, Boudker O (2013) Transport dynamics in a glutamate transporter homologue. Nature 502:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA, Khelashvili G, Altman RB, Terry DS, Freed JH, Weinstein H, Boudker O, Blanchard SC (2015) Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 518:68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastug T, Heinzelmann G, Kuyucak S, Salim M, Vandenberg RJ, Ryan RM (2012) Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1. PLoS ONE 7:e33058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendahan A, Armon A, Madani N, Kavanaugh MP, Kanner BI (2000) Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J Biol Chem 275:37436–37442

    Article  CAS  PubMed  Google Scholar 

  • Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettaney KE, Sukumar P, Hussain R, Siligardi G, Henderson PJ, Patching SG (2013) A systematic approach to the amplified expression, functional characterization and purification of inositol transporters from Bacillus subtilis. Mol Membr Biol 30:3–14

    Article  PubMed  Google Scholar 

  • Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393

    Article  CAS  PubMed  Google Scholar 

  • Bradley SA, Tinsley CR, Muiry JA, Henderson PJ (1987) Proton-linked L-fucose transport in Escherichia coli. Biochem J 248:495–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • DeChancie J, Shrivastava IH, Bahar I (2011) The mechanism of substrate release by the aspartate transporter GltPh: Insights from simulations. Mol BioSyst 7:832–842

    Article  CAS  PubMed  Google Scholar 

  • Deguchi Y, Yamato I, Anraku Y (1989) Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B. J Bacteriol 71:1314–1319

    Article  Google Scholar 

  • Divito CB, Underhill SM (2014) Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 73:172–180

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Madine J, Fielding L, Middleton DA (2010) Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site. Phys Chem Chem Phys 12:13999–14008

    Article  CAS  PubMed  Google Scholar 

  • Erkens GB, Hänelt I, Goudsmits JM, Slotboom DJ, van Oijen AM (2013) Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502:119–123

    Article  CAS  PubMed  Google Scholar 

  • Ewers D, Becher T, Machtens JP, Weyand I, Fahlke C (2013) Induced fit substrate binding to an archeal glutamate transporter homologue. Proc Natl Acad Sci U S A 110:12486–12491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay HE, Rutherford NG, Henderson PJ, Booth PJ (2010) Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc Natl Acad Sci USA 107:18451–18456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  PubMed  Google Scholar 

  • Focke PJ, Wang X, Larsson HP (2013) Neurotransmitter transporters: structure meets function. Structure 21:694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Gendreau S, Voswinkel S, Torres-Salazar D, Lang N, Heidtmann H, Detro-Dassen S, Schmalzing G, Hidalgo P, Fahlke C (2004) A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J Biol Chem 279:39505–39512

    Article  CAS  PubMed  Google Scholar 

  • Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewer C, Gameiro A, Rauen T (2014) SLC1 glutamate transporters. Pflugers Arch 466:3–24

    Article  CAS  PubMed  Google Scholar 

  • Groeneveld M, Slotboom DJ (2010) Na+:aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry 49:3511–3513

    Article  CAS  PubMed  Google Scholar 

  • Guskov A, Jensen S, Faustino I, Marrink SJ, Slotboom DJ (2016) Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat Commun 7:13420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänelt I, Jensen S, Wunnicke D, Slotboom DJ (2015) Low affinity and slow Na+ binding precedes high affinity aspartate binding in the secondary-active transporter GltPh. J Biol Chem 290:15962–15972

    Article  PubMed  PubMed Central  Google Scholar 

  • Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271:27715–27722

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA (2009) The blood-brain barrier and glutamate. Am J Clin Nutr 90:867S–874S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzelmann G, Bastug T, Kuyucak S (2013) Mechanism and energetics of ligand release in the aspartate transporter GltPh. J Phys Chem B 117:5486–5496

    Article  CAS  PubMed  Google Scholar 

  • Henderson PJ, Giddens RA, Jones-Mortimer MC (1977) Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J 162:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen AA, Fahlke C, Bjørn-Yoshimoto WE, Bunch L (2015) Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 20:116–123

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Amara SG (2011) New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology 60:172–181

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 447:469–479

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Clémençon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA (2013) The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 34:108–120

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh MP, Bendahan A, Zerangue N, Zhang YM, Kanner BI (1997) Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Biol Chem 272:1703–1708

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Larsson HP, Wang X, Lev B, Baconguis I, Caplan DA, Vyleta NP, Koch HP, Diez-Sampedro A, Noskov SY (2010) Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc Natl Acad Sci USA 107:13912–13917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na + -dependent glutamate uptake. J Neurosci 18:9620–9628

    CAS  PubMed  Google Scholar 

  • Liguz-Lecznar M, Skangiel-Kramska J (2007) Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp (Wars) 67:207–218

    Google Scholar 

  • Lum D, Lee CJ, Wallace BJ (1993) Location of the gltP gene on the physical map of Escherichia coli K-12. J Bacteriol 175:5735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Yuille HM, Blessie V, Göhring N, Iglόi Z, Nishiguchi K, Nakayma J, Henderson PJF, Phillips-Jones MK (2008) Expression, purification and activities of the entire family of intact membrane sensor kinases from Encterococcus faecalis. Mol Membr Biol 25:449–473

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Varela F, Magoch M, Silva AR, Rosario AL, Oliveira TF, Nogy P, Pessanha M, Stelter M, Kletzin A, Henderson PJF, Archer M (2013) An efficient strategy for small-scale screening and production of archaeal membrane transport proteins in Escherichia coli. PLoS ONE 8:e76913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Patching SG, Ivanova E, Baldwin J, Sharples DJ, Baldwin SA, Henderson PJF (2016) Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity. Microbiology 162:823–836

    Article  CAS  PubMed  Google Scholar 

  • McDonald TP, Walmsley AR, Martin GE, Henderson PJ (1995) The role of tryptophans 371 and 395 in the binding of antibiotics and the transport of sugars by the D-galactose-H+ symport protein (GalP) from Escherichia coli. J Biol Chem 270:30359–30370

    Article  CAS  PubMed  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    CAS  PubMed  Google Scholar 

  • Moreland JL, Gramada A, Buzko OV, Zhang Q, Bourne PE (2005) The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Nakagawa T, Kaneko S (2013) SLC1 glutamate transporters and diseases: psychiatric diseases and pathological pain. Curr Mol Pharmacol 6:66–73

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3:748–755

    Article  CAS  PubMed  Google Scholar 

  • Patching SG (2015) Solid-state NMR structures of integral membrane proteins. Mol Membr Biol 32:156–178

    Article  CAS  PubMed  Google Scholar 

  • Patching SG (2016) Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. doi:10.1007/s12035-015-9672-6

    PubMed  Google Scholar 

  • Patching SG, Brough AR, Herbert RB, Rajakarier JA, Henderson PJ, Middleton DA (2004a) Substrate affinities for membrane transport proteins determined by 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy. J Am Chem Soc 126:3072–3080

    Article  CAS  PubMed  Google Scholar 

  • Patching SG, Herbert RB, O’Reilly J, Brough AR, Henderson PJ (2004b) Low 13C-background for NMR-based studies of ligand binding using 13C-depleted glucose as carbon source for microbial growth: 13C-labeled glucose and 13C-forskolin binding to the galactose-H+ symport protein GalP in Escherichia coli. J Am Chem Soc 126:86–87

    Article  CAS  PubMed  Google Scholar 

  • Patching SG, Henderson PJ, Herbert RB, Middleton DA (2008a) Solid-state NMR spectroscopy detects interactions between tryptophan residues of the E. coli sugar transporter GalP and the alpha-anomer of the d-glucose substrate. J Am Chem Soc 130:1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Patching SG, Psakis G, Baldwin SA, Baldwin J, Henderson PJ, Middleton DA (2008b) Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR. Mol Membr Biol 25:474–484

    Article  CAS  PubMed  Google Scholar 

  • Patching SG, Henderson PJ, Sharples DJ, Middleton DA (2013) Probing the contacts of a low-affinity substrate with a membrane-embedded transport protein using 1H-13C cross-polarisation magic-angle spinning solid-state NMR. Mol Membr Biol 30:129–137

    Article  PubMed  Google Scholar 

  • Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173:278–286

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Ismat F, McPherson MJ, Baldwin SA (2007) Topology-informed strategies for the overexpression and purification of membrane proteins. Mol Membr Biol 24:407–418

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Patching SG, Ismat F, Henderson PJ, Herbert RB, Baldwin SA, McPherson MJ (2008) Probing metal ion substrate-binding to the E. coli ZitB exporter in native membranes by solid state NMR. Mol Membr Biol 25(8):683–690

    Article  CAS  PubMed  Google Scholar 

  • Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA 106:1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raunser S, Appel M, Ganea C, Geldmacher-Kaufer U, Fendler K, Kühlbrandt W (2006) Structure and function of prokaryotic glutamate transporters from Escherichia coli and Pyrococcus horikoshii. Biochemistry 45:12796–12805

    Article  CAS  PubMed  Google Scholar 

  • Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RM, Compton EL, Mindell JA (2009) Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J Biol Chem 284:17540–17548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidijam M, Patching SG (2015) Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure. J Biomol Struct Dyn 33:2205–2220

    Article  CAS  PubMed  Google Scholar 

  • Saidijam M, Psakis G, Clough JL, Meuller J, Suzuki S, Hoyle CJ, Palmer SL, Morrison SM, Pos MK, Essenberg RC, Maiden MC, Abu-bakr A, Baumberg SG, Neyfakh AA, Griffith JK, Stark MJ, Ward A, O’Reilly J, Rutherford NG, Phillips-Jones MK, Henderson PJ (2003) Collection and characterisation of bacterial membrane proteins. FEBS Lett 555:170–175

    Article  CAS  PubMed  Google Scholar 

  • Saidijam M, Azizpour S, Patching SG (2016) Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction. J Biomol Struct Dyn. doi:10.1080/07391102.2016.1167622

    PubMed  Google Scholar 

  • Saier MH (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scopelliti AJ, Ryan RM, Vandenberg RJ (2013) Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members. J Biol Chem 288:8250–8257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seal RP, Amara SG (1998) A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation. Neuron 21:1487–1498

    Article  CAS  PubMed  Google Scholar 

  • Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45:250–265

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein N, Ewers D, Forrest LR, Fahlke C, Kanner BI (2015) Molecular determinants of substrate specificity in sodium-coupled glutamate transporters. J Biol Chem 290:28988–28996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotboom DJ, Konings WN, Lolkema JS (1999) Structural features of the glutamate transporter family. Microbiol Mol Biol Rev 63:293–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slotboom DJ, Konings WN, Lolkema JS (2001) Cysteine-scanning mutagenesis reveals a highly amphipathic, pore-lining membrane-spanning helix in the glutamate transporter GltT. J Biol Chem 276:10775–10781

    Article  CAS  PubMed  Google Scholar 

  • Szakonyi G, Leng D, Ma P, Bettaney KE, Saidijam M, Ward A, Zibaei S, Gardiner AT, Cogdell RJ, Butaye P, Kolsto AB, O’reilly J, Hope RJ, Rutherford NG, Hoyle CJ, Henderson PJ (2007) A genomic strategy for cloning, expressing and purifying efflux proteins of the major facilitator superfamily. J Antimicrob Chemother 59:1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Tolner B, Poolman B, Wallace B, Konings WN (1992) Revised nucleotide sequence of the gltP gene, which encodes the proton-glutamate-aspartate transport protein of Escherichia coli K-12. J Bacteriol 174:2391–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolner B, Ubbink-Kok T, Poolman B, Konings WN (1995) Cation-selectivity of the L-glutamate transporters of Escherichia coli, Bacillus stearothermophilus and Bacillus caldotenax: dependence on the environment in which the proteins are expressed. Mol Microbiol 18:123–133

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan S, Saha K, Sohail A, Sandtner W, Freissmuth M, Ecker GF, Sitte HH, Stockner T (2015) Refinement of the central steps of substrate transport by the aspartate transporter GltPh: Elucidating the role of the Na2 sodium binding site. PLoS Comput Biol 11:e1004551

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace B, Yang YJ, Hong JS, Lum D (1990) Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12. J Bacteriol 172:3214–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward A, Sanderson NM, O’Reilly J, Rutherford NG, Poolman B, Henderson PJF (2000) The amplified expression, identification purification, assay and properties of hexahistidine-tagged bacterial membrane transport proteins. In: Baldwin SA (ed) Membrane transport: a practical approach. Oxford University Press, Oxford, pp 141–166

    Google Scholar 

  • Witholt B, Boekhout M, Brock M, Kingma J, Heerikhuizen HV, Leij LD (1976) An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem 74(1):160–170

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Patching SG, Gallagher MP, Litherland GJ, Brough AR, Venter H, Yao SY, Ng AM, Young JD, Herbert RB, Henderson PJ, Baldwin SA (2004) Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family. Mol Membr Biol 21(5):323–336

    Article  CAS  PubMed  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–888

    Article  CAS  PubMed  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Bendahan A, Zarbiv R, Kavanaugh MP, Kanner BI (1998) Molecular determinant of ion selectivity of a (Na++K+)-coupled rat brain glutamate transporter. Proc Natl Acad Sci USA 95:751–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the BBSRC Membrane Protein Structure Initiative (MPSI, BBS/B/14418), the EU European Drug Initiative on Channels and Transporters consortium (EDICT, contract 201294), the EPSRC (EP/G035695/1), Invitrogen Corporation and the University of Leeds. The authors thank Malcolm Levitt (University of Southampton) for support. MR thanks the Islamic Development Bank (IDB) and the University of Leeds for a PhD studentship and Mike McPherson (University of Leeds) for advice. Mass spectrometry was performed using the Biomolecular Mass Spectrometry Facility in the Astbury Centre for Structural Molecular Biology with assistance from Alison Ashcroft (University of Leeds). The authors also thank Denise Ashworth and Jeff Keen (University of Leeds) for performing DNA and protein sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Patching.

Additional information

This paper is dedicated to the memory of Stephen A. Baldwin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M., Ismat, F., Jiao, L. et al. Characterisation of the DAACS Family Escherichia coli Glutamate/Aspartate-Proton Symporter GltP Using Computational, Chemical, Biochemical and Biophysical Methods. J Membrane Biol 250, 145–162 (2017). https://doi.org/10.1007/s00232-016-9942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9942-x

Keywords

Navigation