Skip to main content

Advertisement

Log in

SLC1 glutamate transporters

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na+ ions and the countertransport of one K+ in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure–function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abrahamsen B, Schneider N, Erichsen MN, Huynh TH, Fahlke C, Bunch L, Jensen AA (2013) Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J Neurosci 33(3):1068–1087. doi:10.1523/JNEUROSCI.3396-12.2013

    CAS  PubMed  Google Scholar 

  2. Adamczyk A, Gause CD, Sattler R, Vidensky S, Rothstein JD, Singer H, Wang T (2011) Genetic and functional studies of a missense variant in a glutamate transporter, SLC1A3, in Tourette syndrome. Psychiatric genetics 21(2):90–97. doi:10.1097/YPG.0b013e328341a307

    PubMed  Google Scholar 

  3. Akyuz N, Altman RB, Blanchard SC, Boudker O (2013) Transport dynamics in a glutamate transporter homologue. Nature 502:114–118. doi: 10.1038/nature12265

    Google Scholar 

  4. Allritz C, Bette S, Figiel M, Engele J (2009) Endothelin-1 reverses the histone deacetylase inhibitor-induced increase in glial glutamate transporter transcription without affecting histone acetylation levels. Neurochem Int 55(1–3):22–27. doi:10.1016/j.neuint.2008.12.020

    CAS  PubMed  Google Scholar 

  5. Allritz C, Bette S, Figiel M, Engele J (2010) Comparative structural and functional analysis of the GLT-1/EAAT-2 promoter from man and rat. J Neurosci Res 88(6):1234–1241. doi:10.1002/jnr.22303

    CAS  PubMed  Google Scholar 

  6. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. doi:10.1038/nature02871

    CAS  PubMed  Google Scholar 

  7. Arnold PD, Sicard T, Burroughs E, Richter MA, Kennedy JL (2006) Glutamate transporter gene SLC1A1 associated with obsessive–compulsive disorder. Arch Gen Psychiatr 63(7):769–776. doi:10.1001/archpsyc.63.7.769

    CAS  PubMed  Google Scholar 

  8. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 94(8):4155–4160

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14(9):5559–5569

    CAS  PubMed  Google Scholar 

  10. Azami Tameh A, Clarner T, Beyer C, Atlasi MA, Hassanzadeh G, Naderian H (2013) Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Ann Anat. doi:10.1016/j.aanat.2013.03.004

  11. Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest 121(1):446–453. doi:10.1172/JCI44474

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bastug T, Heinzelmann G, Kuyucak S, Salim M, Vandenberg RJ, Ryan RM (2012) Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1. PLoS One 7(3):e33058. doi:10.1371/journal.pone.0033058

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150(1):5–17. doi:10.1038/sj.bjp.0706949

    CAS  PubMed  Google Scholar 

  14. Bendahan A, Armon A, Madani N, Kavanaugh MP, Kanner BI (2000) Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J Biol Chem 275(48):37436–37442. doi:10.1074/jbc.M006536200

    CAS  PubMed  Google Scholar 

  15. Benediktsson AM, Marrs GS, Tu JC, Worley PF, Rothstein JD, Bergles DE, Dailey ME (2012) Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 60(2):175–188. doi:10.1002/glia.21249

    PubMed Central  PubMed  Google Scholar 

  16. Berger UV, DeSilva TM, Chen W, Rosenberg PA (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492(1):78–89

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bergles DE, Tzingounis AV, Jahr CE (2002) Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22(23):10153–10162

    CAS  PubMed  Google Scholar 

  18. Billups B, Rossi D, Attwell D (1996) Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J Neurosci 16(21):6722–6731

    CAS  PubMed  Google Scholar 

  19. Blakely PK, Kleinschmidt-DeMasters BK, Tyler KL, Irani DN (2009) Disrupted glutamate transporter expression in the spinal cord with acute flaccid paralysis caused by West Nile virus infection. J Neuropathol Exp Neurol 68(10):1061–1072. doi:10.1097/NEN.0b013e3181b8ba14

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445(7126):387–393. doi:10.1038/nature05455

    CAS  PubMed  Google Scholar 

  21. Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends Pharmacol Sci 31(9):418–426. doi:10.1016/j.tips.2010.06.004

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Boycott HE, Wilkinson JA, Boyle JP, Pearson HA, Peers C (2008) Differential involvement of TNF alpha in hypoxic suppression of astrocyte glutamate transporters. Glia 56(9):998–1004. doi:10.1002/glia.20673

    PubMed  Google Scholar 

  23. Bridges RJ, Lovering FE, Koch H, Cotman CW, Chamberlin AR (1994) A conformationally constrained competitive inhibitor of the sodium-dependent glutamate transporter in forebrain synaptosomes: L-anti-endo-3,4-methanopyrrolidine dicarboxylate. Neurosci Lett 174(2):193–197

    CAS  PubMed  Google Scholar 

  24. Broer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77(3):705–719

    CAS  PubMed  Google Scholar 

  25. Broer A, Wagner C, Lang F, Broer S (2000) Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J 346:705–710

    CAS  PubMed  Google Scholar 

  26. Butchbach ME, Guo H, Lin CL (2003) Methyl-beta-cyclodextrin but not retinoic acid reduces EAAT3-mediated glutamate uptake and increases GTRAP3-18 expression. J Neurochem 84(4):891–894

    CAS  PubMed  Google Scholar 

  27. Butchbach ME, Tian G, Guo H, Lin CL (2004) Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function. J Biol Chem 279(33):34388–34396

    CAS  PubMed  Google Scholar 

  28. Callender R, Gameiro A, Pinto A, De Micheli C, Grewer C (2012) Mechanism of inhibition of the glutamate transporter EAAC1 by the conformationally constrained glutamate analogue (+)-HIP-B. Biochemistry 51(27):5486–5495. doi:10.1021/bi3006048

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Campiani G, De Angelis M, Armaroli S, Fattorusso C, Catalanotti B, Ramunno A, Nacci V, Novellino E, Grewer C, Ionescu D, Rauen T, Griffiths R, Sinclair C, Fumagalli E, Mennini T (2001) A rational approach to the design of selective substrates and potent nontransportable inhibitors of the excitatory amino acid transporter EAAC1 (EAAT3). new glutamate and aspartate analogues as potential neuroprotective agents. J Med Chem 44(16):2507–2510

    CAS  PubMed  Google Scholar 

  30. Campiani G, Fattorusso C, De Angelis M, Catalanotti B, Butini S, Fattorusso R, Fiorini I, Nacci V, Novellino E (2003) Neuronal high-affinity sodium-dependent glutamate transporters (EAATs): targets for the development of novel therapeutics against neurodegenerative diseases. Curr Pharm Des 9(8):599–625

    CAS  PubMed  Google Scholar 

  31. Chen W, Aoki C, Mahadomrongkul V, Gruber CE, Wang GJ, Blitzblau R, Irwin N, Rosenberg PA (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22(6):2142–2152

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 6(6):637–641. doi:10.1038/76211

    CAS  PubMed  Google Scholar 

  33. Crino PB, Jin H, Shumate MD, Robinson MB, Coulter DA, Brooks-Kayal AR (2002) Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia 43(3):211–218

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Crisman TJ, Qu S, Kanner BI, Forrest LR (2009) Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc Natl Acad Sci U S A 106(49):20752–20757. doi:10.1073/pnas.0908570106

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    CAS  PubMed  Google Scholar 

  36. de Vivo L, Melone M, Bucci G, Rothstein JD, Conti F (2010) Quantitative analysis of EAAT4 promoter activity in neurons and astrocytes of mouse somatic sensory cortex. Neurosci Lett 474(1):42–45. doi:10.1016/j.neulet.2010.03.003

    PubMed  Google Scholar 

  37. DeChancie J, Shrivastava IH, Bahar I (2011) The mechanism of substrate release by the aspartate transporter GltPh: insights from simulations. Mol Biosyst 7(3):832–842. doi:10.1039/c0mb00175a

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17(12):4672–4687

    CAS  PubMed  Google Scholar 

  39. Drejer J, Larsson OM, Schousboe A (1982) Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from differnt brain regions. ExpBrain Res 47:259–269

    CAS  Google Scholar 

  40. Duerson K, Woltjer RL, Mookherjee P, Leverenz JB, Montine TJ, Bird TD, Pow DV, Rauen T, Cook DG (2009) Detergent-insoluble EAAC1/EAAT3 aberrantly accumulates in hippocampal neurons of Alzheimer’s disease patients. Brain pathology 19(2):267–278. doi:10.1111/j.1750-3639.2008.00186.x

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Dunlop J, McIlvain HB, Carrick TA, Jow B, Lu Q, Kowal D, Lin S, Greenfield A, Grosanu C, Fan K, Petroski R, Williams J, Foster A, Butera J (2005) Characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT2. Mol Pharmacol 68(4):974–982. doi:10.1124/mol.105.012005

    CAS  PubMed  Google Scholar 

  42. Eliasof S, Arriza JL, Leighton BH, Kavanaugh MP, Amara SG, Amara SG (1998) Excitatory amino acid transporters of the salamander retina: identification, localization, and function. J Neurosci 18(2):698–712

    CAS  PubMed  Google Scholar 

  43. Eliasof S, Jahr CE (1996) Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc Natl Acad Sci U S A 93(9):4153–4158

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Eliasof S, Werblin F (1993) Characterization of the glutamate transporter in retinal cones of the tiger salamander. J Neurosci 13(1):402–411

    CAS  PubMed  Google Scholar 

  45. Erichsen MN, Huynh TH, Abrahamsen B, Bastlund JF, Bundgaard C, Monrad O, Bekker-Jensen A, Nielsen CW, Frydenvang K, Jensen AA, Bunch L (2010) Structure–activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chrom ene-3-carbonitrile (UCPH-101). J Med Chem 53(19):7180–7191. doi:10.1021/jm1009154

    CAS  PubMed  Google Scholar 

  46. Escartin C, Won SJ, Malgorn C, Auregan G, Berman AE, Chen PC, Déglon N, Johnson JA, Suh SW, Swanson RA (2011) Nuclear factor erythroid 2-related factor 2 facilitates neuronal glutathione synthesis by upregulating neuronal excitatory amino acid transporter 3 expression. J Neurosci 31(20):7392–401

    Google Scholar 

  47. Estrada-Sanchez AM, Rebec GV (2012) Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: interactions between neurons and astrocytes. Basal ganglia 2(2):57–66. doi:10.1016/j.baga.2012.04.029

    PubMed Central  PubMed  Google Scholar 

  48. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375(6532):599–603

    CAS  PubMed  Google Scholar 

  49. Figiel M, Engele J (2000) Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron- derived peptide regulating glial glutamate transport and metabolism. J Neurosci 20(10):3596–3605

    CAS  PubMed  Google Scholar 

  50. Focke PJ, Wang X, Larsson HP (2013) Neurotransmitter transporters: structure meets function. Structure 21(5):694–705. doi:10.1016/j.str.2013.03.002

    CAS  PubMed  Google Scholar 

  51. Fontana AC, de Oliveira Beleboni R, Wojewodzic MW, Ferreira Dos Santos W, Coutinho-Netto J, Grutle NJ, Watts SD, Danbolt NC, Amara SG (2007) Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol 72(5):1228–1237. doi:10.1124/mol.107.037127

    CAS  PubMed  Google Scholar 

  52. Fontana AC, Guizzo R, de Oliveira BR, Meirelles ESAR, Coimbra NC, Amara SG, dos Santos WF, Coutinho-Netto J (2003) Purification of a neuroprotective component of Parawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol 139(7):1297–1309. doi:10.1038/sj.bjp.0705352

    CAS  PubMed  Google Scholar 

  53. Funicello M, Conti P, De Amici M, De Micheli C, Mennini T, Gobbi M (2004) Dissociation of [3H]L-glutamate uptake from L-glutamate-induced [3H]D-aspartate release by 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-4-carboxylic acid and 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid, two conformationally constrained aspartate and glutamate analogs. Mol Pharmacol 66(3):522–529. doi:10.1124/mol.66.3

    CAS  PubMed  Google Scholar 

  54. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157(1):80–94. doi:10.1016/j.neuroscience.2008.08.043

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gameiro A, Braams S, Rauen T, Grewer C (2011) The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. Biophys J 100(11):2623–2632. doi:10.1016/j.bpj.2011.04.034

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Garcia-Tardon N, Gonzalez-Gonzalez IM, Martinez-Villarreal J, Fernandez-Sanchez E, Gimenez C, Zafra F (2012) Protein kinase C (PKC)-promoted endocytosis of glutamate transporter GLT-1 requires ubiquitin ligase Nedd4-2-dependent ubiquitination but not phosphorylation. J Biol Chem 287(23):19177–19187. doi:10.1074/jbc.M112.355909

    CAS  PubMed  Google Scholar 

  57. Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69(6):2612–2615

    CAS  PubMed  Google Scholar 

  58. Gegelashvili G, Robinson MB, Trotti D, Rauen T (2001) Regulation of glutamate transporters in health and disease. Prog Brain Res 132:267–286. doi:10.1016/S0079-6123(01)32082-4

    CAS  PubMed  Google Scholar 

  59. Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52(1):6–15

    CAS  PubMed  Google Scholar 

  60. Gincel D, Regan MR, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis. Exp Neurol 203(1):205–212

    CAS  PubMed  Google Scholar 

  61. Glisic D, Lehmann C, Figiel M, Odemis V, Lindner R, Engele J (2012) A novel cross-talk between endothelin and ErbB receptors controlling glutamate transporter expression in astrocytes. J Neurochem 122(4):844–855. doi:10.1111/j.1471-4159.2012.07819.x

    CAS  PubMed  Google Scholar 

  62. Gonzalez MI, Krizman-Genda E, Robinson MB (2007) Caveolin-1 regulates the delivery and endocytosis of the glutamate transporter, excitatory amino acid carrier 1. J Biol Chem 282(41):29855–29865. doi:10.1074/jbc.M704738200

    CAS  PubMed  Google Scholar 

  63. Gonzalez MI, Robinson MB (2004) Protein kinase C-dependent remodeling of glutamate transporter function. Mol Intervent 4(1):48–58

    CAS  Google Scholar 

  64. Gonzalez-Gonzalez IM, Garcia-Tardon N, Gimenez C, Zafra F (2008) PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster. Glia 56(9):963–974. doi:10.1002/glia.20670

    PubMed  Google Scholar 

  65. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, Spitalny GM, MacArthur RB, Mitsumoto H, Neville HE, Boylan K, Mozaffar T, Belsh JM, Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R, Western ALSSG (2007) Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6(12):1045–1053. doi:10.1016/S1474-4422(07)70270-3

    CAS  PubMed  Google Scholar 

  66. Greenfield A, Grosanu C, Dunlop J, McIlvain B, Carrick T, Jow B, Lu Q, Kowal D, Williams J, Butera J (2005) Synthesis and biological activities of aryl-ether-, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT-2. Bioorg Med Chem Lett 15(22):4985–4988. doi:10.1016/j.bmcl.2005.08.003

    CAS  PubMed  Google Scholar 

  67. Grewer C, Balani P, Weidenfeller C, Bartusel T, Tao Z, Rauen T (2005) Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44(35):11913–11923. doi:10.1021/bi050987n

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Grewer C, Gameiro A, Zhang Z, Tao Z, Braams S, Rauen T (2008) Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60(9):609–619. doi:10.1002/iub.98

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203(1):1–20. doi:10.1007/s00232-004-0731-6

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Grewer C, Watzke N, Rauen T, Bicho A (2003) Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1? J Biol Chem 278(4):2585–2592. doi:10.1074/jbc.M207956200

    CAS  PubMed  Google Scholar 

  71. Grewer C, Watzke N, Wiessner M, Rauen T (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci U S A 97(17):9706–9711. doi:10.1073/pnas.160170397

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Grewer C, Zhang Z, Mwaura J, Albers T, Schwartz A, Gameiro A (2012) Charge compensation mechanism of a Na+-coupled, secondary active glutamate transporter. J Biol Chem 287(32):26921–26931. doi:10.1074/jbc.M112.364059

    CAS  PubMed  Google Scholar 

  73. Groeneveld M, Slotboom DJ (2010) Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry 49(17):3511–3513. doi:10.1021/bi100430s

    CAS  PubMed  Google Scholar 

  74. Gu Y, Shrivastava IH, Amara SG, Bahar I (2009) Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc Natl Acad Sci U S A 106(8):2589–2594. doi:10.1073/pnas.0812299106

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Hagiwara T, Tanaka K, Takai S, Maeno-Hikichi Y, Mukainaka Y, Wada K (1996) Genomic organization, promoter analysis, and chromosomal localization of the gene for the mouse glial high-affinity glutamate transporter Slc1a3. Genomics 33(3):508–515

    CAS  PubMed  Google Scholar 

  76. Hamann M, Rossi DJ, Marie H, Attwell D (2002) Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia. Eur J Neurosci 15(2):308–314

    PubMed  Google Scholar 

  77. Hanelt I, Wunnicke D, Bordignon E, Steinhoff HJ, Slotboom DJ (2013) Conformational heterogeneity of the aspartate transporter Glt(Ph). Nat Struct Mol Biol 20(2):210–214. doi:10.1038/nsmb.2471

    PubMed  Google Scholar 

  78. Hertz L (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. ProgNeurobiol 13:277–323

    CAS  Google Scholar 

  79. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32(17):6000–6013. doi:10.1523/JNEUROSCI.5347-11.2012

    CAS  PubMed  Google Scholar 

  80. Huang Z, Tajkhorshid E (2008) Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter. Biophys J 95(5):2292–2300. doi:10.1529/biophysj.108.133421

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Huang Z, Tajkhorshid E (2010) Identification of the third Na + site and the sequence of extracellular binding events in the glutamate transporter. Biophys J 99(5):1416–1425. doi:10.1016/j.bpj.2010.06.052

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Huynh TH, Shim I, Bohr H, Abrahamsen B, Nielsen B, Jensen AA, Bunch L (2012) Structure-activity relationship study of selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitor 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chrom ene-3-carbonitrile (UCPH-101) and absolute configurational assignment using infrared and vibrational circular dichroism spectroscopy in combination with ab initio Hartree-Fock calculations. J Med Chem 55(11):5403–5412. doi:10.1021/jm300345z

    CAS  PubMed  Google Scholar 

  83. Jabaudon D, Scanziani M, Gähwiler BH, Gerber U (2000) Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci U S A 97:5610–5615

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211(5052):969–970

    CAS  PubMed  Google Scholar 

  85. Jayanarayanan S, Smijin S, Peeyush KT, Anju TR, Paulose CS (2013) NMDA and AMPA receptor mediated excitotoxicity in cerebral cortex of streptozotocin induced diabetic rat: ameliorating effects of curcumin. Chem Biol Interact 201(1–3):39–48. doi:10.1016/j.cbi.2012.11.024

    CAS  PubMed  Google Scholar 

  86. Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, Investigators C (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130(Pt 10):2484–2493. doi:10.1093/brain/awm126

    CAS  PubMed  Google Scholar 

  87. Jen JC, Wan J, Palos TP, Howard BD, Baloh RW (2005) Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65(4):529–534. doi:10.1212/01.wnl.0000172638.58172.5a

    CAS  PubMed  Google Scholar 

  88. Jiang J, Shrivastava IH, Watts SD, Bahar I, Amara SG (2011) Large collective motions regulate the functional properties of glutamate transporter trimers. Proc Natl Acad Sci U S A 108(37):15141–15146. doi:10.1073/pnas.1112216108

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360(6403):467–471. doi:10.1038/360467a0

    CAS  PubMed  Google Scholar 

  90. Kanai Y, Nussberger S, Romero MF, Boron WF, Hebert SC, Hediger MA (1995) Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter. J Biol Chem 270(28):16561–16568

    CAS  PubMed  Google Scholar 

  91. Karlsson RM, Adermark L, Molander A, Perreau-Lenz S, Singley E, Solomon M, Holmes A, Tanaka K, Lovinger DM, Spanagel R, Heilig M (2012) Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST. Neuropharmacology 63(2):181–189. doi:10.1016/j.neuropharm.2012.01.027

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Karlsson RM, Tanaka K, Heilig M, Holmes A (2008) Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biological psychiatry 64(9):810–814. doi:10.1016/j.biopsych.2008.05.001

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 34(6):1578–1589. doi:10.1038/npp.2008.215

    CAS  Google Scholar 

  94. Ketheeswaranathan P, Turner NA, Spary EJ, Batten TF, McColl BW, Saha S (2011) Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res 1418:93–103. doi:10.1016/j.brainres.2011.08.029

    CAS  PubMed  Google Scholar 

  95. Kim SY, Chao W, Choi SY, Volsky DJ (2003) Cloning and characterization of the 3′-untranslated region of the human excitatory amino acid transporter 2 transcript. J Neurochem 86(6):1458–1467

    CAS  PubMed  Google Scholar 

  96. Kim SY, Choi SY, Chao W, Volsky DJ (2003) Transcriptional regulation of human excitatory amino acid transporter 1 (EAAT1): cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes. J Neurochem 87(6):1485–1498

    CAS  PubMed  Google Scholar 

  97. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493. doi:10.1002/jcp.22609

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Kirschner MA, Arriza JL, Copeland NG, Gilbert DJ, Jenkins NA, Magenis E, Amara SG (1994) The mouse and human excitatory amino-acid transporter gene (eaat1) maps to mouse chromosome-15 and a region of syntenic homology on human-chromosome-5. Genomics 22:631–633

    CAS  PubMed  Google Scholar 

  99. Koch HP, Hubbard JM, Larsson HP (2007) Voltage-independent sodium-binding events reported by the 4B-4C loop in the human glutamate transporter excitatory amino acid transporter 3. J Biol Chem 282(34):24547–24553. doi:10.1074/jbc.M704087200

    CAS  PubMed  Google Scholar 

  100. Koch HP, Lane Brown R, Larsson HP (2007) The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J Neurosci 27(11):2943–2947. doi:10.1523/jneurosci.0118-07.2007

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Krisanova N, Sivko R, Kasatkina L, Borisova T (2012) Neuroprotection by lowering cholesterol: a decrease in membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals. Biochim Biophys Acta 1822(10):1553–1561. doi:10.1016/j.bbadis.2012.06.005

    CAS  PubMed  Google Scholar 

  102. Kriz J, Nguyen MD, Julien JP (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 10(3):268–278

    CAS  PubMed  Google Scholar 

  103. Krnjevic K (2008) Electrophysiology of cerebral ischemia. Neuropharmacology 55(3):319–333. doi:10.1016/j.neuropharm.2008.01.002

    CAS  PubMed  Google Scholar 

  104. Kuersten S, Goodwin EB (2003) The power of the 3′ UTR: translational control and development. Nat Rev Genet 4(8):626–637. doi:10.1038/nrg1125

    CAS  PubMed  Google Scholar 

  105. Kugler P (2004) Expression of glutamate transporters in rat cardiomyocytes and their localization in the T-tubular system. J Histochem Cytochem 52(10):1385–1392. doi:10.1369/jhc.3A6233.2004

    CAS  PubMed  Google Scholar 

  106. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    CAS  PubMed  Google Scholar 

  107. Lang UE, Borgwardt S (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 31(6):761–777. doi:10.1159/000350094

    CAS  PubMed  Google Scholar 

  108. Larsson HP, Picaud SA, Werblin FS, Lecar H (1996) Noise analysis of the glutamate-activated current in photoreceptors. Biophysl J 70(2):733–742

    CAS  Google Scholar 

  109. Larsson HP, Wang X, Lev B, Baconguis I, Caplan DA, Vyleta NP, Koch HP, Diez-Sampedro A, Noskov SY (2010) Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc Natl Acad Sci U S A 107(31):13912–13917. doi:10.1073/pnas.1006289107

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Leary GP, Stone EF, Holley DC, Kavanaugh MP (2007) The glutamate and chloride permeation pathways are colocalized in individual neuronal glutamate transporter subunits. J Neurosci 27(11):2938–2942. doi:10.1523/JNEUROSCI.4851-06.2007

    CAS  PubMed  Google Scholar 

  111. Ledesma MD, Dotti CG (2005) The conflicting role of brain cholesterol in Alzheimer’s disease: lessons from the brain plasminogen system. Biochem Soc Symp 72:129–138

    CAS  PubMed  Google Scholar 

  112. Lee ES, Sidoryk M, Jiang H, Yin Z, Aschner M (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 110(2):530–544. doi:10.1111/j.1471-4159.2009.06105.x

    CAS  PubMed  Google Scholar 

  113. Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283(19):13116–13123. doi:10.1074/jbc.M707697200

    CAS  PubMed  Google Scholar 

  114. Lehmann C, Eisner F, Engele J (2008) Role of endothelins as mediators of injury-induced alterations of glial glutamate turnover. J Neurosci Res 86(3):660–667. doi:10.1002/jnr.21512

    CAS  PubMed  Google Scholar 

  115. Li L, Zuo Z (2011) Glutamate transporter type 3 knockout reduces brain tolerance to focal brain ischemia in mice. J Cereb Blood Flow Metab 31(5):1283–1292. doi:10.1038/jcbfm.2010.222

    PubMed  Google Scholar 

  116. Loo DD, Hazama A, Supplisson S, Turk E, Wright EM (1993) Relaxation kinetics of the Na+/glucose cotransporter. Proc Natl Acad Sci U S A 90(12):5767–5771

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Lu CC, Hilgemann DW (1999) GAT1 (GABA:Na+:Cl) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches. J Gen Physiol 114(3):445–457

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Ma K, Zheng S, Zuo Z (2006) The transcription factor regulatory factor X1 increases the expression of neuronal glutamate transporter type 3. J Biol Chem 281(30):21250–21255. doi:10.1074/jbc.M600521200

    CAS  PubMed  Google Scholar 

  119. Maeda S, Kawamoto A, Yatani Y, Shirakawa H, Nakagawa T, Kaneko S (2008) Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats. Molecular pain 4:65. doi:10.1186/1744-8069-4-65

    PubMed Central  PubMed  Google Scholar 

  120. Martinez-Villarreal J, Garcia Tardon N, Ibanez I, Gimenez C, Zafra F (2012) Cell surface turnover of the glutamate transporter GLT-1 is mediated by ubiquitination/deubiquitination. Glia 60(9):1356–1365. doi:10.1002/glia.22354

    PubMed  Google Scholar 

  121. Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40(5):759–766. doi:10.1002/ana.410400512

    CAS  PubMed  Google Scholar 

  122. Massie A, Goursaud S, Schallier A, Vermoesen K, Meshul CK, Hermans E, Michotte Y (2010) Time-dependent changes in GLT-1 functioning in striatum of hemi-Parkinson rats. Neurochem Int 57(5):572–578. doi:10.1016/j.neuint.2010.07.004

    CAS  PubMed  Google Scholar 

  123. Matoulkova E, Michalova E, Vojtesek B, Hrstka R (2012) The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 9(5):563–576. doi:10.4161/rna.20231

    CAS  PubMed  Google Scholar 

  124. Menaker D, Bendahan A, Kanner BI (2006) The substrate specificity of a neuronal glutamate transporter is determined by the nature of the coupling ion. J Neurochem 99(1):20–28. doi:10.1111/j.1471-4159.2006.04003.x

    CAS  PubMed  Google Scholar 

  125. Meyer T, Fromm A, Munch C, Schwalenstocker B, Fray AE, Ince PG, Stamm S, Gron G, Ludolph AC, Shaw PJ (1999) The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci 170(1):45–50

    CAS  PubMed  Google Scholar 

  126. Meyer T, Ludolph AC, Morkel M, Hagemeier C, Speer A (1997) Genomic organization of the human excitatory amino acid transporter gene GLT-1. Neuroreport 8(3):775–777

    CAS  PubMed  Google Scholar 

  127. Mim C, Tao Z, Grewer C (2007) Two conformational changes are associated with glutamate translocation by the glutamate transporter EAAC1. Biochemistry 46(31):9007–9018. doi:10.1021/bi7005465

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288(10):7105–7116. doi:10.1074/jbc.M112.410944

    CAS  PubMed  Google Scholar 

  129. Muller F, Demeny MA, Tora L (2007) New problems in RNA polymerase II transcription initiation: matching the diversity of core promoters with a variety of promoter recognition factors. J Biol Chem 282(20):14685–14689. doi:10.1074/jbc.R700012200

    PubMed  Google Scholar 

  130. Munch C, Ebstein M, Seefried U, Zhu B, Stamm S, Landwehrmeyer GB, Ludolph AC, Schwalenstocker B, Meyer T (2002) Alternative splicing of the 5′-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis. J Neurochem 82(3):594–603

    CAS  PubMed  Google Scholar 

  131. Munch C, Schwalenstocker B, Hermann C, Cirovic S, Stamm S, Ludolph A, Meyer T (2000) Differential RNA cleavage and polyadenylation of the glutamate transporter EAAT2 in the human brain. Brain Res Mol Brain Res 80(2):244–251

    CAS  PubMed  Google Scholar 

  132. Mwaura J, Tao Z, James H, Albers T, Schwartz A, Grewer C (2012) Protonation state of a conserved acidic amino acid involved in Na(+) binding to the glutamate transporter EAAC1. ACS Chem Neurosci 12:1073–1083

    Google Scholar 

  133. Nothmann D, Leinenweber A, Torres-Salazar D, Kovermann P, Hotzy J, Gameiro A, Grewer C, Fahlke C (2011) Hetero-oligomerization of neuronal glutamate transporters. J Biol Chem 286(5):3935–3943. doi:10.1074/jbc.M110.187492

    CAS  PubMed  Google Scholar 

  134. Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18(18):7099–7110

    CAS  PubMed  Google Scholar 

  135. Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20(8):2749–2757

    CAS  PubMed  Google Scholar 

  136. Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577(Pt 2):591–599

    CAS  PubMed  Google Scholar 

  137. Palmada M, Kinne-Saffran E, Centelles JJ, Kinne RK (2002) Benzodiazepines differently modulate EAAT1/GLAST and EAAT2/GLT1 glutamate transporters expressed in CHO cells. Neurochem Int 40(4):321–326

    CAS  PubMed  Google Scholar 

  138. Peacey E, Miller CC, Dunlop J, Rattray M (2009) The four major N- and C-terminal splice variants of the excitatory amino acid transporter GLT-1 form cell surface homomeric and heteromeric assemblies. Mol Pharmacol 75(5):1062–1073. doi:10.1124/mol.108.052829

    CAS  PubMed  Google Scholar 

  139. Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 16(13):3822–3832. doi:10.1093/emboj/16.13.3822

    CAS  PubMed  Google Scholar 

  140. Perisic T, Holsboer F, Rein T, Zschocke J (2012) The CpG island shore of the GLT-1 gene acts as a methylation-sensitive enhancer. Glia 60(9):1345–1355. doi:10.1002/glia.22353

    PubMed  Google Scholar 

  141. Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, Holsboer F, Rein T, Zschocke J (2010) Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharm 35(3):792–805. doi:10.1038/npp.2009.188

    CAS  Google Scholar 

  142. Picaud SA, Larsson HP, Grant GB, Lecar H, Werblin FS (1995) Glutamate-gated chloride channel with glutamate-transporter-like properties in cone photoreceptors of the tiger salamander. J Neurophys 74(4):1760–1771

    CAS  Google Scholar 

  143. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360(6403):464–467. doi:10.1038/360464a0

    CAS  PubMed  Google Scholar 

  144. Plaitakis A, Shashidharan P (2000) Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol 247(Suppl 2):II25–35

    PubMed  Google Scholar 

  145. Poitry-Yamate CL, Vutskits L, Rauen T (2002) Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function. J Neurochem 82(4):987–997

    CAS  PubMed  Google Scholar 

  146. Porcheray F, Leone C, Samah B, Rimaniol AC, Dereuddre-Bosquet N, Gras G (2006) Glutamate metabolism in HIV-infected macrophages: implications for the CNS. Am J Physiol Cell Physiol 291(4):C618–626. doi:10.1152/ajpcell.00021.2006

    CAS  PubMed  Google Scholar 

  147. Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ (2001) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21(6):1876–1883

    CAS  PubMed  Google Scholar 

  148. Rao PS, Sari Y (2012) Glutamate transporter 1: target for the treatment of alcohol dependence. Curr Med Chem 19(30):5148–5156

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Rauen T (2000) Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids 19(1):53–62

    CAS  PubMed  Google Scholar 

  150. Rauen T, Jeserich G, Danbolt NC, Kanner BI (1992) Comparative analysis of sodium-dependent L-glutamate transport of synaptosomal and astroglial membrane vesicles from mouse cortex. FEBS Lett 312(1):15–20

    CAS  PubMed  Google Scholar 

  151. Rauen T, Kanner BI (1994) Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neurosci Lett 169(1–2):137–140

    CAS  PubMed  Google Scholar 

  152. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291(1):19–31

    CAS  PubMed  Google Scholar 

  153. Rauen T, Wiessner M (2000) Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem Int 37(2–3):179–189

    CAS  PubMed  Google Scholar 

  154. Rauen T, Wiessner M, Sullivan R, Lee A, Pow DV (2004) A new GLT1 splice variant: cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochem Int 45(7):1095–1106. doi:10.1016/j.neuint.2004.04.006

    CAS  PubMed  Google Scholar 

  155. Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci: JPN 38(1):6–23. doi:10.1503/jpn.110190

    PubMed  Google Scholar 

  156. Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462(7275):880–885. doi:10.1038/nature08616

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Roberts PJ, Watkins JC (1975) Structural requirements for the inhibition for L-glutamate uptake by glia and nerve endings. Brain Res 85(1):120–125

    CAS  PubMed  Google Scholar 

  158. Robinson MB (1998) The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int 33(6):479–491

    CAS  PubMed  Google Scholar 

  159. Robinson MB (2002) Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 80(1):1–11

    CAS  PubMed  Google Scholar 

  160. Rosental N, Gameiro A, Grewer C, Kanner BI (2011) A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters. J Biol Chem 286(48):41381–41390. doi:10.1074/jbc.M111.291021

    CAS  PubMed  Google Scholar 

  161. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321. doi:10.1038/35002090

    CAS  PubMed  Google Scholar 

  162. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–9. doi:10.1002/ana.21543

    CAS  PubMed  Google Scholar 

  163. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326(22):1464–1468. doi:10.1056/NEJM199205283262204

    CAS  PubMed  Google Scholar 

  164. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77. doi:10.1038/nature03180

    CAS  PubMed  Google Scholar 

  165. Rozyczka J, Engele J (2005) Multiple 5′-splice variants of the rat glutamate transporter-1. Brain Res Mol Brain Res 133(1):157–161

    CAS  PubMed  Google Scholar 

  166. Rozyczka J, Figiel M, Engele J (2004) Endothelins negatively regulate glial glutamate transporter expression. Brain Pathol 14(4):406–414

    CAS  PubMed  Google Scholar 

  167. Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14(5):365–371. doi:10.1038/nsmb1230

    CAS  PubMed  Google Scholar 

  168. Ryan RM, Mitrovic AD, Vandenberg RJ (2004) The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J Biol Chem 279(20):20742–20751. doi:10.1074/jbc.M304433200

    CAS  PubMed  Google Scholar 

  169. Santos SD, Carvalho AL, Caldeira MV, Duarte CB (2009) Regulation of AMPA receptors and synaptic plasticity. Neuroscience 158(1):105–125. doi:10.1016/j.neuroscience.2008.02.037

    CAS  PubMed  Google Scholar 

  170. Sarthy VP, Pignataro L, Pannicke T, Weick M, Reichenbach A, Harada T, Tanaka K, Marc R (2005) Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice. Glia 49(2):184–196. doi:10.1002/glia.20097

    PubMed  Google Scholar 

  171. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278(10):1598–1609. doi:10.1111/j.1742-4658.2011.08089.x

    CAS  PubMed  Google Scholar 

  172. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103(5):1412–1417. doi:10.1073/pnas.0510310103

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53(3):355–369

    CAS  PubMed  Google Scholar 

  174. Schmitt A, Asan E, Lesch KP, Kugler P (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109(1):45–61

    CAS  PubMed  Google Scholar 

  175. Schousboe A, Hertz L (1981) Role of astroglial cells in glutamate homeostasis. Adv Biochem Psychopharmacol 27:103–113

    CAS  PubMed  Google Scholar 

  176. Seki Y, Feustel PJ, Keller RW Jr, Tranmer BI, Kimelberg HK (1999) Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker. Stroke 30(2):433–440

    CAS  PubMed  Google Scholar 

  177. Sheldon AL, Gonzalez MI, Krizman-Genda EN, Susarla BT, Robinson MB (2008) Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 53(6–8):296–308. doi:10.1016/j.neuint.2008.07.010

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Sheldon AL, Gonzalez MI, Robinson MB (2006) A carboxyl-terminal determinant of the neuronal glutamate transporter, EAAC1, is required for platelet-derived growth factor-dependent trafficking. J Biol Chem 281(8):4876–4886. doi:10.1074/jbc.M504983200

    CAS  PubMed  Google Scholar 

  179. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51(6–7):333–355. doi:10.1016/j.neuint.2007.03.012

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T (1998) DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 53(2):195–201

    CAS  PubMed  Google Scholar 

  181. Shimamoto K, Sakai R, Takaoka K, Yumoto N, Nakajima T, Amara SG, Shigeri Y (2004) Characterization of novel L-threo-beta-benzyloxyaspartate derivatives, potent blockers of the glutamate transporters. Mol Pharmacol 65(4):1008–1015. doi:10.1124/mol.65.4.1008

    CAS  PubMed  Google Scholar 

  182. Shouffani A, Kanner BI (1990) Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, gamma-aminobutyric acid transporter from rat brain. J Biol Chem 265(11):6002–6008

    CAS  PubMed  Google Scholar 

  183. Shrivastava IH, Jiang J, Amara SG, Bahar I (2008) Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J Biol Chem 283(42):28680–28690. doi:10.1074/jbc.M800889200

    CAS  PubMed  Google Scholar 

  184. Silverstein N, Crisman TJ, Forrest LR, Kanner BI (2013) Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions. J Biol Chem 288(2):964–973. doi:10.1074/jbc.M112.403576

    CAS  PubMed  Google Scholar 

  185. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699

    CAS  PubMed  Google Scholar 

  186. Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. Embo J 24(3):510–520

    CAS  PubMed  Google Scholar 

  187. Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6(3):294–302

    CAS  PubMed  Google Scholar 

  188. Stephenson FA, Cousins SL, Kenny AV (2008) Assembly and forward trafficking of NMDA receptors (review). Mol Membr Biol 25(4):311–320. doi:10.1080/09687680801971367

    CAS  PubMed  Google Scholar 

  189. Stolzenberg S, Khelashvili G, Weinstein H (2012) Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh. J Phys Chem B 116(18):5372–5383. doi:10.1021/jp301726s

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89(22):10955–10959

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Su ZZ, Leszczyniecka M, Kang DC, Sarkar D, Chao W, Volsky DJ, Fisher PB (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci U S A 100(4):1955–1960. doi:10.1073/pnas.0136555100

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Sullivan R, Rauen T, Fischer F, Wiessner M, Grewer C, Bicho A, Pow DV (2004) Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45(2):155–169. doi:10.1002/glia.10317

    PubMed  Google Scholar 

  193. Suzuki Y, Tsunoda T, Sese J, Taira H, Mizushima-Sugano J, Hata H, Ota T, Isogai T, Tanaka T, Nakamura Y, Suyama A, Sakaki Y, Morishita S, Okubo K, Sugano S (2001) Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Res 11(5):677–684. doi:10.1101/gr.164001

    CAS  PubMed  Google Scholar 

  194. Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17(3):932–940

    CAS  PubMed  Google Scholar 

  195. Szostak E, Gebauer F (2013) Translational control by 3′-UTR-binding proteins. Brief Funct Genomics 12(1):58–65. doi:10.1093/bfgp/els056

    CAS  PubMed  Google Scholar 

  196. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    CAS  PubMed  Google Scholar 

  197. Tao Z, Grewer C (2007) Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1. J Gen Physiol 129(4):331–344. doi:10.1085/jgp.200609678

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Tao Z, Rosental N, Kanner BI, Gameiro A, Mwaura J, Grewer C (2010) Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. J Biol Chem 285(23):17725–17733. doi:10.1074/jbc.M110.121798

    CAS  PubMed  Google Scholar 

  199. Tao Z, Zhang Z, Grewer C (2006) Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J Biol Chem 281(15):10263–10272. doi:10.1074/jbc.M510739200

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Tavoulari S, Rizwan AN, Forrest LR, Rudnick G (2011) Reconstructing a chloride-binding site in a bacterial neurotransmitter transporter homologue. J Biol Chem 286(4):2834–2842. doi:10.1074/jbc.M110.186064

    CAS  PubMed  Google Scholar 

  201. Tian G, Kong Q, Lai L, Ray-Chaudhury A, Lin CL (2010) Increased expression of cholesterol 24S-hydroxylase results in disruption of glial glutamate transporter EAAT2 association with lipid rafts: a potential role in Alzheimer's disease. J Neurochem 113(4):978–89

    Google Scholar 

  202. Tokusumi Y, Ma Y, Song X, Jacobson RH, Takada S (2007) The new core promoter element XCPE1 (X Core Promoter Element 1) directs activator-, mediator-, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters. Mol Cell Biol 27(5):1844–1858. doi:10.1128/MCB.01363-06

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Torres-Salazar D, Fahlke C (2006) Intersubunit interactions in EAAT4 glutamate transporters. J Neurosci 26(28):7513–7522. doi:10.1523/JNEUROSCI.4545-05.2006

    CAS  PubMed  Google Scholar 

  204. Tsuru N, Ueda Y, Doi T (2002) Amygdaloid kindling in glutamate transporter (GLAST) knockout mice. Epilepsia 43(8):805–811

    CAS  PubMed  Google Scholar 

  205. Unger T, Lakowa N, Bette S, Engele J (2012) Transcriptional regulation of the GLAST/EAAT-1 gene in rat and man. Cell Mol Neurobiol 32(4):539–547. doi:10.1007/s10571-011-9790-2

    CAS  PubMed  Google Scholar 

  206. Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271(25):14883–14890

    CAS  PubMed  Google Scholar 

  207. Utsunomiya-Tate N, Endou H, Kanai Y (1997) Tissue specific variants of glutamate transporter GLT-1. FEBS Lett 416(3):312–316

    CAS  PubMed  Google Scholar 

  208. Valladolid-Acebes I, Merino B, Principato A, Fole A, Barbas C, Lorenzo MP, Garcia A, Del Olmo N, Ruiz-Gayo M, Cano V (2012) High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission. Am J Physiol Endocrinol Metab 302(4):E396–402. doi:10.1152/ajpendo.00343.2011

    CAS  PubMed  Google Scholar 

  209. Vandenberg RJ, Mitrovic AD, Johnston GA (1998) Serine-O-sulphate transport by the human glutamate transporter, EAAT2. Br J Pharmacol 123(8):1593–1600. doi:10.1038/sj.bjp.0701776

    CAS  PubMed  Google Scholar 

  210. Verdon G, Boudker O (2012) Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 19(3):355–357. doi:10.1038/nsmb.2233

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Veruki ML, Mørkve SH, Hartveit E (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9(11):1388–1396

    CAS  PubMed  Google Scholar 

  212. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    CAS  PubMed  Google Scholar 

  213. Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14(5):1019–1027

    CAS  PubMed  Google Scholar 

  214. Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18(19):7650–7661

    CAS  PubMed  Google Scholar 

  215. Waly MI, Hornig M, Trivedi M, Hodgson N, Kini R, Ohta A, Deth R (2012) Prenatal and postnatal epigenetic programming: implications for GI, immune, and neuronal function in autism. Autism Res Treat 2012:190930. doi:10.1155/2012/190930

    PubMed Central  PubMed  Google Scholar 

  216. Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka K (1999) Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain research 845(1):92–96

    CAS  PubMed  Google Scholar 

  217. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10(3):976–988

    CAS  PubMed  Google Scholar 

  218. Watzke N, Bamberg E, Grewer C (2001) Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1. J Gen Physiol 117(6):547–562

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Watzke N, Grewer C (2001) The anion conductance of the glutamate transporter EAAC1 depends on the direction of glutamate transport. FEBS Lett 503 2–3:121–125

    Google Scholar 

  220. Watzke N, Rauen T, Bamberg E, Grewer C (2000) On the mechanism of proton transport by the neuronal excitatory amino acid carrier 1. J Gen Physiol 116(5):609–622

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Wersinger E, Schwab Y, Sahel J-A, Rendon A, Pow DV, Picaud S, Roux MJ (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 577(1):221–234. doi:10.1113/jphysiol.2006.118281

    CAS  PubMed  Google Scholar 

  222. Wilson DF, Pastuszko A (1986) Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate. J Neurochem 47(4):1091–1097

    CAS  PubMed  Google Scholar 

  223. Winter N, Kovermann P, Fahlke C (2012) A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. Brain 135(Pt 11):3416–3425. doi:10.1093/brain/aws255

    PubMed  Google Scholar 

  224. Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58(3):277–286. doi:10.1002/glia.20922

    PubMed Central  PubMed  Google Scholar 

  225. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431(7010):811–818. doi:10.1038/nature03018

    CAS  PubMed  Google Scholar 

  226. Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, Grinspan JB, Rothstein JD, Robinson MB (2000) Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 57(4):667–678

    CAS  PubMed  Google Scholar 

  227. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637. doi:10.1038/383634a0

    CAS  PubMed  Google Scholar 

  228. Zerangue N, Kavanaugh MP (1996) Interaction of L-cysteine with a human excitatory amino acid transporter. J Physiol 493(Pt 2):419–423

    CAS  PubMed  Google Scholar 

  229. Zhang R, Su B (2009) Small but influential: the role of microRNAs on gene regulatory network and 3′UTR evolution. J Genet Genomics 36(1):1–6. doi:10.1016/S1673-8527(09)60001-1

    PubMed  Google Scholar 

  230. Zhang Z, Tao Z, Gameiro A, Barcelona S, Braams S, Rauen T, Grewer C (2007) Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1. Proc Natl Acad Sci U S A 104(46):18025–18030. doi:10.1073/pnas.0704570104

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Zschocke J, Allritz C, Engele J, Rein T (2007) DNA methylation dependent silencing of the human glutamate transporter EAAT2 gene in glial cells. Glia 55(7):663–674. doi:10.1002/glia.20497

    PubMed  Google Scholar 

  232. Zschocke J, Bayatti N, Behl C (2005) Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: association of GLT-1 with non-caveolar lipid rafts. Glia 49(2):275–287. doi:10.1002/glia.20116

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant 2R01NS049335-06A1 awarded to CG and a Binational Science Foundation (BSF), grant 2007051 awarded to CG and B. I. Kanner.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christof Grewer or Thomas Rauen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewer, C., Gameiro, A. & Rauen, T. SLC1 glutamate transporters. Pflugers Arch - Eur J Physiol 466, 3–24 (2014). https://doi.org/10.1007/s00424-013-1397-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1397-7

Keywords

Navigation