Skip to main content
Log in

Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The membrane disruption and pore-forming mechanism of melittin has been widely explored by experiments and computational studies. However, the precise mechanism is still enigmatic, and further study is required to turn antimicrobial peptides into future promising drugs against microbes. In this study, unbiased microsecond (µs) time scale (total 17 µs) atomistic molecular dynamics simulation were performed on multiple melittin systems in 1,2-dimyristoyl-sn-glycero-3-phosphocholine membrane to capture the various events during the membrane disorder produced by melittin. We observed bent U-shaped conformations of melittin, penetrated deeply into the membrane in all simulations, and a special double U-shaped structure. However, no peptide transmembrane insertion, nor pore formation was seen, indicating that these processes occur on much longer timescales, and suggesting that many prior computational studies of melittin were not sufficiently unbiased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88:1828–1837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andersson M, Ulmschneider JakobP, Ulmschneider MartinB, White StephenH (2013) Conformational states of melittin at a bilayer interface. Biophys J 104:L12–L14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Berneche S, Nina M, Roux B (1998) Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J 75:1603–1618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30

    Article  CAS  PubMed  Google Scholar 

  • Brown LR, Lauterwein J, Wuthrich K (1980) High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta 622:231–244

    Article  CAS  PubMed  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  • Chen X, Wang J, Boughton AP, Kristalyn CB, Chen Z (2007) Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies. J Am Chem Soc 129:1420–1427

    Article  CAS  PubMed  Google Scholar 

  • Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP, Kostrzhevskaia EG (1986) Melittin: structure, properties, interaction with a membrane. Ukr Biokhim Zh 58:92–103

    CAS  PubMed  Google Scholar 

  • Hancock RE, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97:8856–8861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hristova K, Dempsey CE, White SH (2001) Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 80(2):801–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39:8347–8352

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  • Irudayam SJ, Berkowitz ML (2011) Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores. Biochim Biophys Acta 1808:2258–2266

    Article  CAS  PubMed  Google Scholar 

  • Irudayam SJ, Berkowitz ML (2012) Binding and reorientation of melittin in a POPC bilayer: computer simulations. Biochim Biophys Acta 1818:2975–2981

    Article  CAS  PubMed  Google Scholar 

  • Iwadate M, Asakura T, Williamson MP (1998) The structure of the melittin tetramer at different temperatures—an NOE-based calculation with chemical shift refinement. Eur J Biochem 257:479–487

    Article  CAS  PubMed  Google Scholar 

  • Langham AA, Ahmad AS, Kaznessis YN (2008) On the nature of antimicrobial activity: a model for protegrin-1 pores. J Am Chem Soc 130:4338–4346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee MT, Sun TL, Hung WC, Huang HW (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci USA 110:14243–14248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128:12156–12161

    Article  CAS  PubMed  Google Scholar 

  • Leveritt JM III (2015) The structure of a melittin-stabilized toroidal pore. Biophys J 108(2):249a. doi:10.1016/j.bpj.2014.11.1380

    Article  Google Scholar 

  • Lin JH, Baumgaertner A (2000) Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J 78:1714–1724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohner K, Blondelle SE (2005) Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High Throughput Screen 8:241–256

    Article  CAS  PubMed  Google Scholar 

  • Manna M, Mukhopadhyay C (2009) Cause and effect of melittin-induced pore formation: a computational approach. Langmuir 25:12235–12242

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Yoneyama S, Miyajima K (1997) Pore formation and translocation of melittin. Biophys J 73:831–838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park Y, Hahm KS (2005) Antimicrobial peptides (AMPs): peptide structure and mode of action. J Biochem Mol Biol 38:507–516

    Article  CAS  PubMed  Google Scholar 

  • Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rex S (1996) Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem 58(1–2):75–85

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Martinez S, Huarte N, Maeso R, Madan V, Carrasco L, Nieva JL (2008) Functional and structural characterization of 2B viroporin membranolytic domains. Biochemistry 47:10731–10739

    Article  CAS  PubMed  Google Scholar 

  • Santo KP, Irudayam SJ, Berkowitz ML (2013) Melittin creates transient pores in a lipid bilayer: results from computer simulations. J Phys Chem B 117:5031–5042

    Article  CAS  PubMed  Google Scholar 

  • Schwarz G, Zong RT, Popescu T (1992) Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim Biophys Acta 1110(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Oren Z, Shai Y, Anglister J (1999) 2D-NMR and ATR-FTIR study of the structure of a cell-selective diastereomer of melittin and its orientation in phospholipids. Biochemistry 38:15305–15316

    Article  CAS  PubMed  Google Scholar 

  • Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115:246–270

    Article  CAS  PubMed  Google Scholar 

  • van den Bogaart G, Guzman JV, Mika JT, Poolman B (2008) On the mechanism of pore formation by melittin. J Biol Chem 283:33854–33857

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Vogel H, Jahnig F (1986) The structure of melittin in membranes. Biophys J 50:573–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao T, Wei D, Strandberg E, Ulrich AS, Ulmschneider JP (2014) How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? Biochim Biophys Acta Biomembr 1838:2280–2288

    Article  CAS  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed Central  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Kemple MD, Yuan P, Prendergast FG (1995) N-terminus and lysine side chain pKa values of melittin in aqueous solutions and micellar dispersions measured by 15 N NMR. Biochemistry 34:13196–13202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Natural Science Foundation of China (91230105) and a 1000 Plan’s Program for Young Talents (13Z127060001) to J.P.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob P. Ulmschneider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, S.K., Wang, Y., Zhao, T. et al. Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers. J Membrane Biol 248, 497–503 (2015). https://doi.org/10.1007/s00232-015-9807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9807-8

Keywords

Navigation