Skip to main content
Log in

The Neuroprotective Ability of Polyethylene Glycol is Affected by Temperature in Ex Vivo Spinal Cord Injury Model

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Immediate membrane sealing after spinal cord injury (SCI) can prevent further degradation and result in ultimate functional recovery. It has been reported that polyethylene glycol (PEG) can repair membrane damage caused by mechanical insults to the spinal cord. Furthermore, membrane fluidity and its sealing process vary at different temperatures. Here, we have assessed the possible synergistic effects of PEG and temperature on the repair of neural membranes in an SCI model. The effects of PEGs (400, 1,000 and 2,000 Da) were studied at different temperatures (25, 37 and 40 °C) by means of compound action potential (CAP) recovery and a lactate dehydrogenase (LDH) assay. Isolated spinal cords were mounted in a double sucrose gap chamber, where the amplitude and area of CAPs were recorded after implementing injury, in the presence and absence of PEG. Moreover, the LDH assay was used to assess the effects of PEG on membrane resealing. Data showed that the least CAP recovery occurred at 25 °C, followed by 37 and 40 °C, in all treated groups. Moreover, maximum CAP amplitude recovery, 65.46 ± 5.04 %, was monitored in the presence of PEG400 at 40 °C, followed by 41.49 ± 2.41 % in PEG1000 and 37.36 ± 1.62 % in PEG2000. Furthermore, raising the temperature from 37 to 40 °C significantly increased CAP recovery in the PEG2000 group. Similar recovery patterns were obtained by CAP area measurements and LDH assay. The results suggest that application of low-molecular weight PEG (PEG400) in mild hyperthermia conditions (40 °C) provides the optimum condition for membrane sealing in SCI model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baptiste DC, Fehlings MG (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23(3–4):318–334

    Article  PubMed  Google Scholar 

  • Beattie MS, Hermann GE, Rogers RC, Bresnahan JC (2002) Cell death in models of spinal cord injury. Prog Brain Res 137:37–47

    Article  PubMed  Google Scholar 

  • Biagas KV, Gaeta ML (1998) Treatment of traumatic brain injury with hypothermia. Curr Opin Pediatr 10(3):271–277

    Article  PubMed  CAS  Google Scholar 

  • Borgens RB, Shi R, Bohnert D (2002) Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol 205(pt 1):1–12

    PubMed  Google Scholar 

  • Britt JM, Kane JR, Spaeth CS, Zuzek A, Robinson GL, Gbanaglo MY, Estler CJ, Boydston EA, Schallert T, Bittner GD (2010) Polyethylene glycol rapidly restores axonal integrity and improves the rate of motor behavior recovery after sciatic nerve crush injury. J Neurophysiol 104(2):695–703

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Richardsen H (1999) Lipid vesicles and membrane fusion. Adv Drug Deliv Rev 38(3):207–232

    Article  PubMed  CAS  Google Scholar 

  • Davidson RL, Gerald PS (1976) Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol. Somatic Cell Genet 2:165–176

    Article  PubMed  CAS  Google Scholar 

  • Duerstock BS, Borgens RB (2002) Three-dimensional morphometry of spinal cord injury following polyethylene glycol treatment. J Exp Biol 205(pt 1):13–24

    PubMed  Google Scholar 

  • Hannig J, Yu J, Beckett M, Weichselbaum R, Lee RC (1999) Poloxamine 1107 sealing of radiopermeabilized erythrocyte membranes. Int J Radiat Biol 75(3):379–385

    Article  PubMed  CAS  Google Scholar 

  • Hannig J, Zhang D, Canaday DJ, Beckett MA, Astumian RD, Weichselbaum RR, Lee RC (2000) Surfactant sealing of membranes permeabilized by ionizing radiation. Radiat Res 154(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Hansebout RR, Tanner JA, Romero-Sierra C (1984) Current status of spinal cord cooling in the treatment of acute spinal cord injury. Spine 9(5):508–511

    Article  PubMed  CAS  Google Scholar 

  • Honmou O, Young W (1995) Traumatic injury of spinal axons. In: Waxman SG, Kocsis J, Stys P (eds) The axon. Oxford University Press, New York, pp 480–529

    Chapter  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20(1):83–90

    Article  PubMed  CAS  Google Scholar 

  • Kwon BK, Mann C, Sohn HM, Hilibrand AS, Phillips FM, Wang JC, Fehlings MG (2008) Hypothermia for spinal cord injury. Spine J 8(6):859–874

    Article  PubMed  Google Scholar 

  • Laverty PH, Leskovar A, Breur GJ, Coates JR, Bergman RL, Widmer WR, Toombs JP, Shapiro S, Borgens RB (2004) A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J Neurotrauma 21(12):1767–1777

    Article  PubMed  Google Scholar 

  • Luo J, Shi R (2007) Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury. Brain Res 1155:10–16

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Borgens R, Shi R (2002a) Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem 83(2):471–480

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Li N, Robinson JP, Shi R (2002b) The increase of reactive oxygen species and their inhibition in an isolated guinea pig spinal cord compression model. Spinal Cord 40(12):656–665

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Borgens R, Shi R (2004) Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. J Neurotrauma 21(8):994–1007

    Article  PubMed  Google Scholar 

  • Nakajima N, Ikada Y (1995) Effects of concentration, molecular-weight, and exposure time of poly(ethylene glycol) on cell-fusion. Polymer J 27(3):211–219

    Article  CAS  Google Scholar 

  • Nehrt A, Hamann K, Ouyang H, Shi R (2010) Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord. J Neurotrauma 27(1):151–161

    Article  PubMed  Google Scholar 

  • Nomura H, Tator CH, Shoichet MS (2006) Bioengineered strategies for spinal cord repair. J Neurotrauma 23(3–4):496–507

    Article  PubMed  Google Scholar 

  • Peasley MA, Shi R (2003) Ischemic insult exacerbates acrolein-induced conduction loss and axonal membrane disruption in guinea pig spinal cord white matter. J Neurol Sci 216(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15(3):415–436

    Article  PubMed  Google Scholar 

  • Pryor J, Shi R (2006) Electrophysiological changes in isolated spinal cord white matter in response to oxygen deprivation. Spinal Cord 44(11):653–661

    Article  PubMed  CAS  Google Scholar 

  • Shi R, Borgens RB (1999) Acute repair of crushed guinea pig spinal cord by polyethylene glycol. J Neurophysiol 81(5):2406–2414

    PubMed  CAS  Google Scholar 

  • Shi R, Borgens RB (2000) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29(9):633–643

    Article  PubMed  CAS  Google Scholar 

  • Shi R, Borgens RB (2001) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29:633–643

    Article  Google Scholar 

  • Shi R, Pryor JD (2000) Temperature dependence of membrane sealing following transection in mammalian spinal cord axons. Neuroscience 98(1):157–166

    Article  PubMed  CAS  Google Scholar 

  • Spaeth CS, Robison T, Fan JD, Bittner GD (2012) Cellular mechanisms of plasmalemmal sealing and axonal repair by polyethylene glycol and methylene blue. J Neurosci Res 90(5):955–966. doi:10.1002/jnr.23022

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Ransom BR, Waxman SG (1991) Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Res 546(1):18–32

    Article  PubMed  CAS  Google Scholar 

  • Velumian AA, Wan Y, Samoilova M, Fehlings MG (2010) Modular double sucrose gap apparatus for improved recording of compound action potentials from rat and mouse spinal cord white matter preparations. J Neurosci Methods 187(1):33–40. doi:10.1016/j.jneumeth.2009.12.006

    Article  PubMed  Google Scholar 

  • Vijayalakshmi A, KrishnaKumari VV, Madhusudhana Rao N (1999) Probing polyethylene glycol-phospholipid membrane interactions using enzymes. J Colloid Interface Sci 219(1):190–194

    Article  PubMed  CAS  Google Scholar 

  • Yawo H, Kuno M (1985) Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. J Neurosci 5(6):1626–1632

    PubMed  CAS  Google Scholar 

  • Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11(suppl 1):13–22

    PubMed  Google Scholar 

  • Zwirbla W, Sikorska A, Linde BBJ (2005) Ultrasonic investigations of water mixtures with polyethylene glycols 200, 400 and ethylene glycol. J Mol Struct 743(1–3):49–52

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of the University of Tehran is appreciated

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mobasheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouhzaei, S., Rad, I., Khodayari, K. et al. The Neuroprotective Ability of Polyethylene Glycol is Affected by Temperature in Ex Vivo Spinal Cord Injury Model. J Membrane Biol 246, 613–619 (2013). https://doi.org/10.1007/s00232-013-9574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9574-3

Keywords

Navigation