Skip to main content
Log in

Extracting Curvature Preferences of Lipids Assembled in Flat Bilayers Shows Possible Kinetic Windows for Genesis of Bilayer Asymmetry and Domain Formation in Biological Membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Studies on the assembly of pure lipid components allow mechanistic insights toward understanding the structural and functional aspects of biological membranes. Molecular dynamic (MD) simulations on membrane systems provide molecular details on membrane dynamics that are difficult to obtain experimentally. A large number of MD studies have remained somewhat disconnected from a key concept of amphipathic assembly resulting in membrane structures—shape parameters of lipid molecules in those structures in aqueous environments. This is because most of the MD studies have been done on flat lipid membranes. With the above in view, we analyzed MD simulations of 26 pure lipid patches as a function of (1) lipid type(s) and (2) time of MD simulations along with 35–40 ns trajectories of five pure lipids. We report, for the first time, extraction of curvature preferences of lipids from MD simulations done on flat bilayers. Our results may lead to mechanistic insights into the possible origins of bilayer asymmetries and domain formation in biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  PubMed  Google Scholar 

  • Apajalahti T, Niemel P, Govindan PN, Miettinen MS, Salonen E, Marrink S-J, Vattulainen I (2010) Concerted diffusion of lipids in raft-like membranes. Faraday Discuss 144:411–430

    Article  PubMed  CAS  Google Scholar 

  • Asp L, Kartberg F, Fernandez-Rodriguez J, Smedh M, Elsner M, Laporte F, Barcena M, Jansen KA, Valentijn JA, Koster AJ, Bergeron JJM, Nilsson T (2009) Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol Biol Cell 20:780–790

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD (1972) Model membranes. Chem Phys Lipids 8:386–392

    Article  PubMed  CAS  Google Scholar 

  • Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein–lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik LV, Kozlov MM, Melikyan GB, Abidor IG, Markin VS, Chizmadzhev YA (1985) The shape of lipid molecules and monolayer membrane fusion. Biochim Biophys Acta 812:643–655

    Article  CAS  Google Scholar 

  • Chernomordik L, Leikina E, Cho M-S, Zimmerberg J (1995) Control of baculovirus gp64-induced syncytium formation by membrane lipid composition. J Virol 69:3049–3058

    PubMed  CAS  Google Scholar 

  • Christian DA, Tian A, Ellenbroek WG, Levental I, Rajagopal K, Janmey PA, Liu AJ, Baumgart T, Discher DE (2009) Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nat Mater 8:843–849

    Article  PubMed  CAS  Google Scholar 

  • Christiansson A, Kuypers FA, Roelofsen B, Op Den Kamp JAF, Van Deenen LLM (1985) Lipid molecular shape affects erythrocyte morphology: a study involving replacement of native phosphatidylcholine with different species followed by treatment of cells with sphingomyelinase C or phospholipase A2. J Cell Biol 101:1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Cicuta P, Keller SL, Veatch SL (2007) Diffusion of liquid domains in lipid bilayer membranes. J Phys Chem B 111:3328–3331

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Keller SL (2008) Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc Natl Acad Sci USA 105:124–128

    Article  PubMed  CAS  Google Scholar 

  • Cooke IR, Deserno M (2006) Coupling between lipid shape and membrane curvature. Biophys J 91:487–495

    Article  PubMed  CAS  Google Scholar 

  • Davis CH, Nie H, Dokholyan NV (2007) Insights into thermophilic archaebacterial membrane stability from simplified models of lipid membranes. Phys Rev E 75:051921-1-6

    Article  Google Scholar 

  • Dickey A, Faller R (2008a) Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 95:2636–2646

    Article  PubMed  CAS  Google Scholar 

  • Dickey A, Faller R (2008b) Behavioral differences between phosphatidic acid and phosphatidylcholine in the presence of the nicotinic acetylcholine receptor. Biophys J 95:5637–5647

    Article  PubMed  CAS  Google Scholar 

  • Emoto K, Umeda M (2000) An essential role for a membrane lipid in cytokinesis: regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J Cell Biol 149:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Feller SE, Venable RM, Pastor RW (1997) Computer simulation of a DPPC phospholipid bilayer: structural changes as a function of molecular surface area. Langmuir 13:6555–6561

    Article  CAS  Google Scholar 

  • Gurtovenko AA, Patra M, Karttunen M, Vattulainen I (2004) Cationic DMPC/DMTAP lipid bilayers: molecular dynamics study. Biophys J 86:3461–3472

    Article  PubMed  CAS  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703

    PubMed  CAS  Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 72:1525–1568

    Article  Google Scholar 

  • Jimenez-Monreal AM, Villalain J, Aranda FJ, Gomez-Fernandez JC (1998) The phase behavior of aqueous dispersions of unsaturated mixtures of diacylglycerols and phospholipids. Biochim Biophys Acta 1373:209–219

    Article  PubMed  CAS  Google Scholar 

  • Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Mayor S (2010) Induced domain formation in endocytic invagination, lipid sorting, and scission. Cell 142:507–510

    Article  PubMed  CAS  Google Scholar 

  • Judson BL, Brown WJ (2009) Assembly of an intact Golgi complex requires phospholipase A2 (PLA2) activity, membrane tubules, and dynein-mediated microtubule transport. Biochem Biophys Res Commun 389:473–477

    Article  PubMed  CAS  Google Scholar 

  • Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  PubMed  CAS  Google Scholar 

  • Kox AJ, Michels JPJ, Wiegel FW (1980) Simulation of a lipid monolayer using molecular dynamics. Nature 287:317–319

    Article  CAS  Google Scholar 

  • Kumar VV (1991) Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci USA 88:444–448

    Article  PubMed  CAS  Google Scholar 

  • Kupiainen M, Falck E, Ollila S, Niemela P, Gurtovenko AA, Hyvonen MT, Patra M, Karttunen M, Vattulainen I (2005) Free volume properties of sphingomyelin, DMPC, DPPC, and PLPC bilayers. J Comp Theor Nanosci 2:401–413

    Article  CAS  Google Scholar 

  • Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5:213–230

    Article  PubMed  CAS  Google Scholar 

  • Lazaridis T, Mallik B, Chen Y (2005) Implicit solvent simulations of DPC micelle formation. J Phys Chem B 109:15098–15106

    Article  PubMed  CAS  Google Scholar 

  • Lee GM, Ishihara A, Jacobson KA (1991) Direct observation of Brownian motion of lipids in a membrane. Proc Natl Acad Sci USA 88:6274–6278

    Article  PubMed  CAS  Google Scholar 

  • Lipowsky R (1992) Budding of membranes induced by intramembrane domains. J Phys II (France) 2:1825–1840

    Article  CAS  Google Scholar 

  • Marrink S-J, Berger O, Tieleman P, Jahnig F (1998) Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J 74:931–943

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (1996) Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys J 70:2248–2255

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Meer GV, de Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8

    Article  PubMed  Google Scholar 

  • Mittal A, Grover R (2010) Self-assembly of biological membranes into 200–400 nm aqueous compartments. J Nanosci Nanotechnol 10:3085–3090

    Article  PubMed  CAS  Google Scholar 

  • Mittal A, Leikina E, Bentz J, Chernomordik LV (2002) Kinetics of influenza hemagglutinin mediated membrane fusion as a function of technique. Anal Biochem 303:145–152

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Soe TT, Maxfield FR (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144:1271–1284

    Article  PubMed  CAS  Google Scholar 

  • Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192:7–16

    Article  PubMed  CAS  Google Scholar 

  • Pandit SA, Jakobsson E, Scott HL (2004) Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys J 87:3312–3322

    Article  PubMed  CAS  Google Scholar 

  • Patra M, Karttunen M, Hyvonen MT, Falck E, Lindqvist P, Vattulainenz I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    Article  PubMed  CAS  Google Scholar 

  • Patra M, Karttunen M, Hyvonen MT, Falck E, Vattulainenz I (2004) Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B 108:4485–4494

    Article  CAS  Google Scholar 

  • Pecheur EI, Martin I, Maier O, Bakowsky U, Ruysschaert JM, Hoekstra D (2002) Phospholipid species act as modulators in p97/p47-mediated fusion of Golgi membranes. Biochemistry 41:9813–9823

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (2009) Protocells: bridging nonliving and living matter. MIT Press, Cambridge

    Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Schafer LV, Marrink SJ (2010) Partitioning of lipids at domain boundaries in model membranes. Biophys J 99:L91–L93

    Article  PubMed  Google Scholar 

  • Seelig A, Seeling J (1974) The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13(23):4839–4845

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Varma R, Sarasij RC, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589

    Article  PubMed  CAS  Google Scholar 

  • Shillcock JC, Lipowsky R (2005) Tension-induced fusion of bilayer membranes and vesicles. Nat Mater 4:225–228

    Article  PubMed  CAS  Google Scholar 

  • Suits F, Pitman MC, Feller SE (2005) Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers. J Chem Phys 122:244714-1-9

    Article  Google Scholar 

  • Szule JA, Fuller NL, Rand RP (2002) The effects of acyl chain length and saturation of diacylglycerols and phosphatidylcholines on membrane monolayer curvature. Biophys J 83:977–984

    Article  PubMed  CAS  Google Scholar 

  • Tanford C (1973) The hydrophobic effect: formation of micelles and biological membranes. Wiley-Interscience, New York

    Google Scholar 

  • Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200:1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Tieleman DP, Berendsen HJC (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J 74:2786–2801

    Article  PubMed  CAS  Google Scholar 

  • Tieleman DP, Sansom MSP, Berendsen HJC (1999) Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J 76:40–49

    Article  PubMed  CAS  Google Scholar 

  • Tieleman DP, van der Spoel D, Berendsen HJC (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J Phys Chem B 104:6380–6388

    Article  CAS  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    Article  PubMed  CAS  Google Scholar 

  • Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV (2010) Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 6:e1001131

    Article  PubMed  Google Scholar 

  • Zhao W, Rog T, Gurtovenko AA, Vattulainen I, Karttunen M (2007) Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Biophys J 92:1114–1124

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Rog T, Gurtovenko AA, Vattulainen I, Karttunen M (2008) Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie 90:930–938

    Article  PubMed  CAS  Google Scholar 

  • Zhao LN, Chiu S-W, Benoit J, Chew LY, Mu Y (2011) Amyloid β peptides aggregation in a mixed membrane bilayer: a molecular dynamics study. J Phys Chem B 115:12247–12256

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Suhas Vasaikar and Chanchal Acharya at the Indian Institute of Technology for helpful discussions. S. B. is grateful for research fellowship support from the Council of Scientific and Industrial research, government of India. We are also very grateful to our anonymous reviewers for their invaluable inputs in improving the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Mittal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, S., Mittal, A. Extracting Curvature Preferences of Lipids Assembled in Flat Bilayers Shows Possible Kinetic Windows for Genesis of Bilayer Asymmetry and Domain Formation in Biological Membranes. J Membrane Biol 246, 557–570 (2013). https://doi.org/10.1007/s00232-013-9568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9568-1

Keywords

Navigation