Skip to main content

Advertisement

Log in

Planning of Electroporation-Based Treatments Using Web-Based Treatment-Planning Software

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Electroporation-based treatment combining high-voltage electric pulses and poorly permanent cytotoxic drugs, i.e., electrochemotherapy (ECT), is currently used for treating superficial tumor nodules by following standard operating procedures. Besides ECT, another electroporation-based treatment, nonthermal irreversible electroporation (N-TIRE), is also efficient at ablating deep-seated tumors. To perform ECT or N-TIRE of deep-seated tumors, following standard operating procedures is not sufficient and patient-specific treatment planning is required for successful treatment. Treatment planning is required because of the use of individual long-needle electrodes and the diverse shape, size and location of deep-seated tumors. Many institutions that already perform ECT of superficial metastases could benefit from treatment-planning software that would enable the preparation of patient-specific treatment plans. To this end, we have developed a Web-based treatment-planning software for planning electroporation-based treatments that does not require prior engineering knowledge from the user (e.g., the clinician). The software includes algorithms for automatic tissue segmentation and, after segmentation, generation of a 3D model of the tissue. The procedure allows the user to define how the electrodes will be inserted. Finally, electric field distribution is computed, the position of electrodes and the voltage to be applied are optimized using the 3D model and a downloadable treatment plan is made available to the user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agerholm-Larsen B, Iversen HK, Ibsen P et al (2011) Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res 71:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Aström M, Zrinzo LU, Tisch S et al (2009) Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med Biol Eng Comput 47:21–28

    Article  PubMed  Google Scholar 

  • Beichel R, Pock T, Janko C et al (2004) Liver segment approximation in CT data for surgical resection planning. SPIE medical imaging ‘04, vol 5370. SPIE, San Diego, pp 1435–1446

    Google Scholar 

  • Birkfellner W (2010) Applied medical image processing: a basic course. Taylor and Francis, New York

    Google Scholar 

  • Čorović S, Lacković I, Šuštaršič P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 12:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Cukjati D, Batiuskaite D, Andre F et al (2007) Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70:501–507

    Article  CAS  PubMed  Google Scholar 

  • Daugimont L, Baron N, Vandermeulen G et al (2010) Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol 236:117–125

    Article  CAS  PubMed  Google Scholar 

  • Davalos R, Rubinsky B (2008) Temperature considerations during irreversible electroporation. Int J Heat Mass Transf 51:5617–5622

    Article  Google Scholar 

  • De Pasquale F, Stander J (2009) A multi-scale template method for shape detection with bio-medical applications. Pattern Anal Appl 12:179–192

    Article  Google Scholar 

  • Edhemović I, Gadžijev EM, Brecelj E et al (2011) Electrochemotherapy: a new technological approach in treatment of metastases in the liver. Technol Cancer Res Treat 10:475–485

    PubMed Central  PubMed  Google Scholar 

  • Fini M, Tschon M, Alberghini M et al (2011) Cell electroporation in bone tissue. In: Key ST, Gehl J, Lee EW (eds) Clinical aspects of electroporation. Springer, New York, pp 115–127

    Chapter  Google Scholar 

  • Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. In: Wells W, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention. Springer, Berlin, pp 130–137

    Google Scholar 

  • Gabriel S, Lau R, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  CAS  PubMed  Google Scholar 

  • Garcia P, Pancotto T, Rossmeisl J et al (2011) Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol Cancer Res Treat 10:73–83

    PubMed Central  CAS  PubMed  Google Scholar 

  • Golberg A, Rubinsky B (2012) Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol Cancer Res Treat 11:189–201

    PubMed  Google Scholar 

  • Gusbeth C, Frey W, Volkmann H et al (2009) Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75:228–233

    Article  CAS  PubMed  Google Scholar 

  • Haemmerich D, Schutt D, Wright A et al (2009) Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation. Physiol Meas 30:459–466

    Article  PubMed Central  PubMed  Google Scholar 

  • Heller L, Heller R (2010) Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 10:312–317

    Article  CAS  PubMed  Google Scholar 

  • Heymann M, Degani A (2007) Formal analysis and automatic generation of user interfaces: approach, methodology, and an algorithm. Hum Factors 49:311–330

    Article  PubMed  Google Scholar 

  • Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285

    Article  Google Scholar 

  • Kos B, Županič A, Kotnik T et al (2010) Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J Membr Biol 236:147–153

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Bobanovič F, Miklavčič D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    Article  CAS  Google Scholar 

  • Kotnik T, Kramar P, Pucihar G et al (2012) Cell membrane electroporation. Part 1: The phenomenon. IEEE Electr Insul Mag 28:14–23

    Article  Google Scholar 

  • Kranjc M, Bajd F, Sersa I et al (2012) Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments. PLoS One 7:e45737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linnert M, Iversen H, Gehl J (2012) Multiple brain metastases—current management and perspectives for treatment with electrochemotherapy. Radiol Oncol 2012:1–8

    Google Scholar 

  • Mahmood F, Gehl J (2011) Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation. Bioelectrochemistry 81:10–16

    Article  CAS  PubMed  Google Scholar 

  • Mahnič-Kalamiza S, Kotnik T, Miklavčič D (2012) Educational application for visualization and analysis of electric field strength in multiple electrode electroporation. BMC Med Educ 12:102

    Article  PubMed Central  PubMed  Google Scholar 

  • Mali B, Jarm T, Snoj M et al (2013) Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 39:4–16

    Article  CAS  PubMed  Google Scholar 

  • Maor E, Ivorra A, Rubinsky B (2009) Nonthermal irreversible electroporation: novel technology for vascular smooth muscle cells ablation. PLoS One. doi:10.1371/journal.pone.0004757

    PubMed Central  PubMed  Google Scholar 

  • Marty M, Serša G, Garbay J et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer 4:3–13

    Article  CAS  Google Scholar 

  • Miklavčič D (2012) Network for development of electroporation-based technologies and treatments: COST TD1104. J Membr Biol 245:591–598

    Article  PubMed Central  PubMed  Google Scholar 

  • Miklavčič D, Beravs K, Šemrov D et al (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158

    Article  PubMed Central  PubMed  Google Scholar 

  • Miklavčič D, Čorović S, Pucihar G, Pavšelj N (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. EJC 4:45–51

    Google Scholar 

  • Miklavčič D, Snoj M, Županič A et al (2010) Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 9:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Miklavčič D, Serša G, Brecelj E et al (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225

    Article  PubMed Central  PubMed  Google Scholar 

  • Mir LM, Orlowski S, Belehradek J, Paoletti C (1991) Elecrochemotherapy potentiation of antitumor effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    Article  CAS  PubMed  Google Scholar 

  • Mir L, Gehl J, Sersa G et al (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. EJC Suppl 4:14–25

    Article  CAS  Google Scholar 

  • National Electrical Manufacturers Association (2009) Digital imaging and communications in medicine (DICOM)

  • Neal RE, Rossmeisl JH Jr, Garcia PA et al (2011) Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J Clin Oncol 29:E372–E377

    Article  PubMed  Google Scholar 

  • Olsen D, Bruland O, Davis B (2000) Telemedicine in radiotherapy treatment planning: requirements and applications. Radiother Oncol 54:255–259

    Article  CAS  PubMed  Google Scholar 

  • Paulides MM, Bakker JF, Linthorst M et al (2010) The clinical feasibility of deep hyperthermia treatment in the head and neck: new challenges for positioning and temperature measurement. Phys Med Biol 55:2465

    Article  CAS  PubMed  Google Scholar 

  • Pavliha D, Kos B, Županič A et al (2012) Patient-specific treatment planning of electrochemotherapy: procedure design and possible pitfalls. Bioelectrochemistry 87:265–273

    Article  CAS  PubMed  Google Scholar 

  • Pavselj N, Bregar Z, Cukjati D et al (2005) The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 52:1373–1381

    Article  PubMed  Google Scholar 

  • Šel D, Cukjati D, Batiuskaite D et al (2005) Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 52:816–827

    Article  PubMed  Google Scholar 

  • Serša G, Miklavčič D (2008) Electrochemotherapy of tumors. J Visualized Experiments 22

  • Serša G, Miklavčič D, Čemažar M et al (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34:232–240

    Article  PubMed  Google Scholar 

  • Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Proc 46:537–546

    Article  CAS  Google Scholar 

  • Ušaj M, Trontelj K, Miklavčič D, Kandušer M (2010) Cell–cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16–F1) and Chinese hamster ovary (CHO) cells. J Membr Biol 236:107–116

    Article  PubMed  Google Scholar 

  • Zheng Y, Grossman M, Awate SP, Gee JC (2009) Automatic correction of intensity nonuniformity from sparseness of gradient distribution in medical images. Proceedings of the 12th international conference on medical image computing and computer-assisted intervention: part II. Springer, Berlin, pp 852–859

  • Županič A, Miklavčič D (2009) Optimization and numerical modeling in irreversible electroporation treatment planning. In: Rubinsky B (ed) Irreversible electroporation. Springer, Berlin, pp 203–222

    Google Scholar 

  • Županič A, Miklavčič D (2011) Tissue heating during tumor ablation with irreversible electroporation. Electrotech Rev 78:42–47

    Google Scholar 

  • Županič A, Čorović S, Miklavčič D (2008) Optimization of electrode position and electric pulse amplitude in electrochemotherapy. Radiol Oncol 42:93–101

    Google Scholar 

  • Županič A, Kos B, Miklavčič D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57:5425–5440

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Slovenian Research Agency. Research was conducted in the scope of the Electroporation in Biology and Medicine, European Associated Laboratory. The authors thank Dr. Robert Hudej from the Institute of Oncology, Ljubljana, for providing data that were used for preparing the treatment plan for N-TIRE of prostate cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damijan Miklavčič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavliha, D., Kos, B., Marčan, M. et al. Planning of Electroporation-Based Treatments Using Web-Based Treatment-Planning Software. J Membrane Biol 246, 833–842 (2013). https://doi.org/10.1007/s00232-013-9567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9567-2

Keywords

Navigation