Skip to main content
Log in

Comparative Permeabilities of the Paracellular and Transcellular Pathways of Corneal Endothelial Layers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Layers of rabbit corneal endothelial cells were cultured on permeable inserts. We characterized the diffusional permeability of the cell layer to nonelectrolyte and charged molecules and compared the diffusional and filtration permeabilities of the paracellular and transcellular pathways. We determined the rates of diffusion of 3H- and 14C-labeled nonelectrolyte test molecules and estimated the equivalent pore radius of the tight junction. Negatively charged molecules permeate slower than neutral molecules, while positively charged molecules permeate faster. Palmitoyl-dl-carnitine, which opens tight junctions, caused an increase of permeability and equivalent pore radius. Diffusional water permeability was determined with 3H-labeled water; the permeabilities of the tight junction and lateral intercellular space were calculated using tissue geometry and the Renkin equation. The diffusional permeability (P d ) of the paracellular pathway to water is 0.57 μm s−1 and that of the transcellular path is 2.52 μm s−1. From the P d data we calculated the filtration permeabilities (P f ) for the paracellular and transcellular pathways as 41.3 and 30.2 μm s−1, respectively. In conclusion, the movement of hydrophilic molecules through tight junctions corresponds to diffusion through negatively charged pores (r = 2.1 ± 0.35 nm). The paracellular water permeability represents 58% of the filtration permeability of the layer, which points to that route as the site of sizable water transport. In addition, we calculated for NaCl a reflection coefficient of 0.16 ≤ σNaCl ≤ 0.33, which militates against osmosis through the junctions and, hence, indirectly supports the electro-osmosis hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beck RE, Schultz JS (1970) Hindered diffusion in microporous membranes with known pore geometry. Science 170:1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Diecke FP, Ma L, Iserovich P, Fischbarg J (2007) Corneal endothelium transports fluid in the absence of net solute transport. Biochim Biophys Acta 1768:2043–2048

    Article  PubMed  CAS  Google Scholar 

  • Donn A, Miller SL, Mallett NM (1963) Water permeability of the living cornea. Arch Ophthalmol 70:515–521

    PubMed  CAS  Google Scholar 

  • Durbin RP (1960) Osmotic flow of water across permeable cellulose membranes. J Gen Physiol 44:315–326

    Article  PubMed  CAS  Google Scholar 

  • Echevarria M, Kuang K, Iserovich P, Li J, Preston GM, Agre P, Fischbarg J (1993) Cultured bovine corneal endothelial cells express CHIP28 water channels. Am J Physiol Cell Physiol 265:C1349–C1355

    CAS  Google Scholar 

  • Fischbarg J (2010) Fluid transport across leaky epithelia: central role of the tight junction, and supporting role of aquaporins. Physiol Rev 90:1271–1290

    Article  PubMed  CAS  Google Scholar 

  • Fischbarg J, Diecke FP (2005) A mathematical model of electrolyte and fluid transport across corneal endothelium. J Membr Biol 203:41–56

    Article  PubMed  CAS  Google Scholar 

  • Fischbarg J, Warshavsky CR, Lim JJ (1977) Pathways for hydraulically and osmotically-induced water flows across epithelia. Nature 266:71–74

    Article  PubMed  CAS  Google Scholar 

  • Fischbarg J, Diecke FP, Iserovich P, Rubashkin A (2006) The role of the tight junction in paracellular fluid transport across corneal endothelium. Electro-osmosis as a driving force. J Membr Biol 210:117–130

    Article  PubMed  CAS  Google Scholar 

  • Geroski DH, Hadley A (1992) Characterization of corneal endothelium cell cultured on microporous membrane filters. Curr Eye Res 11:61–72

    Article  PubMed  CAS  Google Scholar 

  • Gierer A, Wirtz K (1953) Molekulare Theorie der Mikroreibun g. Z Naturforschung [C] 8a:532

    CAS  Google Scholar 

  • Green K, Green MA (1969) Permeability to water of rabbit corneal membranes. Am J Physiol 217:635–641

    PubMed  CAS  Google Scholar 

  • Guo P, Weinstein AM, Weinbaum S (2003) A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Am J Physiol Renal Physiol 285:F241–F257

    PubMed  CAS  Google Scholar 

  • Hirsch M, Renard G, Faure JP, Pouliquen Y (1976) Formation of intercellular spaces and junctions in regenerating rabbit corneal endothelium. Exp Eye Res 23:385–397

    Article  PubMed  CAS  Google Scholar 

  • Hodson SA, Lawton DM (1987) The apparent reflexion coefficient of the leaky corneal endothelium to sodium chloride is about one in the rabbit. J Physiol 385:97–106

    PubMed  CAS  Google Scholar 

  • Hodson S, O’Leary D, Watkins S (1991) The measurement of ox corneal swelling pressure by osmometry. J Physiol 434:399–408

    PubMed  CAS  Google Scholar 

  • Kim JH, Green K, Martinez M, Paton D (1971) Solute permeability of the corneal endothelium and Descemet’s membrane. Exp Eye Res 12:231–238

    Article  PubMed  CAS  Google Scholar 

  • Klyce SD, Russell SR (1979) Numerical solution of coupled transport equations applied to corneal hydration dynamics. J Physiol 292:107–134

    PubMed  CAS  Google Scholar 

  • Knipp GT, Ho NF, Barsuhn CL, Borchardt RT (1997) Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J Pharm Sci 86:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Lea EJ (1963) Permeation through long narrow pores. J Theor Biol 5:102–107

    Article  PubMed  CAS  Google Scholar 

  • Lim JJ, Fischbarg J (1981) Electrical properties of rabbit corneal endothelium as determined from impedance measurements. Biophys J 36:677–695

    Article  PubMed  CAS  Google Scholar 

  • Lim JJ, Liebovitch LS, Fischbarg J (1983) Ionic selectivity of the paracellular shunt path across rabbit corneal endothelium. J Membr Biol 73:95–102

    Article  PubMed  CAS  Google Scholar 

  • Lohschmidt J (1995) On the size of the air molecules. J Chem Educ 72:870–875

    Article  Google Scholar 

  • Lyslo A, Kvernes S, Garlid K, Ratkje SK (1985) Ionic transport across corneal endothelium. Acta Ophthalmol 63:116–125

    CAS  Google Scholar 

  • Ma L, Kuang K, Smith RW, Rittenband D, Iserovich P, Diecke FP, Fischbarg J (2007) Modulation of tight junction properties relevant to fluid transport across rabbit corneal endothelium. Exp Eye Res 84:790–798

    Article  PubMed  CAS  Google Scholar 

  • Mishima S, Hedbys BO (1967) The permeability of the corneal epithelium and endothelium to water. Exp Eye Res 6:10–32

    Article  PubMed  CAS  Google Scholar 

  • Mishima S, Trenberth SM (1968) Permeability of the corneal endothelium to nonoelectrolytes. Invest Ophthalmol Vis Sci 7:34–43

    CAS  Google Scholar 

  • Narula PM, Xu M, Kuang K, Akiyama R, Fischbarg J (1992) Fluid transport across cultured bovine corneal endothelial cell monolayers. Am J Physiol Cell Physiol 262:C98–C103

    CAS  Google Scholar 

  • Olsen T, Sperling S (1987) The swelling pressure of the human corneal stroma as determined by a new method. Exp Eye Res 44:481–490

    Article  PubMed  CAS  Google Scholar 

  • Preisig PA, Berry CA (1985) Evidence for transcellular osmotic water flow in rat proximal tubules. Am J Physiol Renal Physiol 249:F124–F131

    CAS  Google Scholar 

  • Rector FC, Berry CA (1982) Role of the paracellular pathway in reabsorption of solutes and water by proximal convoluted tubule of the mammalian kidney. In: Bradley SE, Purcell EF (eds) The paracellular pathway. Josiah Macy Jr. Foundation, New York, pp 135–158

    Google Scholar 

  • Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    PubMed  CAS  Google Scholar 

  • Reuss L (2008) Mechanisms of water transport across cell membranes and epithelia. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology. Elsevier Academic Press, Burlington, pp 147–168

    Chapter  Google Scholar 

  • Rubashkin A, Iserovich P, Hernandez J, Fischbarg J (2005) Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions. J Membr Biol 208:251–263

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JM, Li Y, Rubashkin A, Iserovich P, Wen Q, Ruberti JW, Smith RW, Rittenband D, Kuang K, Diecke FPJ, Fischbarg J (2002) Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. J Membr Biol 187:37–50

    Article  PubMed  CAS  Google Scholar 

  • Schafer JA, Andreoli TE (1986) Principles of water and nonelectrolyte transport across membranes. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of membrane disorders. Plenum Medical Book, New York, pp 177–190

    Google Scholar 

  • Shachar-Hill B, Hill AE (2002) Paracellular fluid transport by epithelia. Int Rev Cytol 215:319–350

    Article  PubMed  CAS  Google Scholar 

  • Sobottka Ventura AC, Wälti R, Böhnke M (2001) Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol 85:18–20

    Article  Google Scholar 

  • Sun XC, Allen KT, Xie Q, Stamer WD, Bonanno JA (2001) Effect of AQP1 expression level on CO2 permeability in bovine corneal endothelium. Invest Ophthalmol Vis Sci 42:417–423

    PubMed  CAS  Google Scholar 

  • Thau G, Bloch R, Kedem O (1966) Water transport in porous and non-porous membranes. Desalination 1:129–138

    Article  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2004) The molecular physiology of tight junction pores. Physiology 19:331–338

    Article  PubMed  Google Scholar 

  • Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  • Zhu F, Tajkhorshid E, Schulten K (2004) Theory and simulation of water permeation in aquaporin-1. Biophys J 86:50–57

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant EY06178 and by CONICET grant PIP 01688, both to J. F., who is a career investigator with the Argentine National Research Council (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Fischbarg.

Additional information

Friedrich P. Diecke is now deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diecke, F.P., Cacace, V.I., Montalbetti, N. et al. Comparative Permeabilities of the Paracellular and Transcellular Pathways of Corneal Endothelial Layers. J Membrane Biol 242, 41–51 (2011). https://doi.org/10.1007/s00232-011-9375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9375-5

Keywords

Navigation