Skip to main content

RPE Polarity and Barrier Function

  • Chapter
  • First Online:
Retinal Pigment Epithelium in Health and Disease

Abstract

The RPE separates the photoreceptor side of the neurosensory retina from its choroidal blood supply. Because choroidal capillaries are fenestrated, the RPE functions as the outer blood-retinal barrier. The outer blood-retinal barrier is a dynamic interplay among many cellular processes including the absorption of water, the visual cycle, phagocytosis, and membrane transport. Critical to the barrier’s function, epithelial cell polarity is the asymmetric distribution of proteins between the apical (facing the subretinal space) and basolateral (facing the choroid) plasma membranes. Cell polarity is maintained by tight junctions, which separate the two plasma membrane domains. Tight junctions are also semi-permeable, semi-selective barriers to the transepithelial diffusion of solutes through the paracellular spaces between neighboring cells. Claudins are tight junction proteins that determine selectivity and help determine permeability. In RPE, claudin-19 functions in coordination with RPE-enriched membrane transporters. Further, claudin-19 is a signaling protein that helps determine the RPE phenotype. Experimental assessments of the function of tight junctions are often reduced to the expression of a few proteins or a few simple measurements of transepithelial electrical resistance or the transcellular diffusion of a few tracers. Although convenient for monitoring cultures, this approach ignores the dynamics of this complex structure and can lead to incomplete conclusions. This chapter explores how these principals manifest in the RPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bok D. Autoradiographic studies on the polarity of plasma membrane receptors in retinal pigment epithelial cells. In: Hollyfield J, editor. The structure of the eye. New York: Elsevier Biomedical; 1982. p. 247–56.

    Google Scholar 

  2. Miller SS, Steinberg RH, Oakley B. The electrogenic sodium pump of the frog retinal pigment epithelium. J Membr Biol. 1978;44(3):259–79.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol. 2014;15(4):225–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelson WJ, Dickinson DJ, Weis WI. Roles of cadherins and catenins in cell−cell adhesion and epithelial cell polarity. In: van Roy F, editor. Prog Mol Biol Transl Sci, vol. 116: Academic; 2013. p. 3–23.

    Google Scholar 

  5. Manninen A. Epithelial polarity—generating and integrating signals from the ECM with integrins. Exp Cell Res. 2015;334(2):337–49.

    Article  CAS  PubMed  Google Scholar 

  6. Rizzolo LJ. Polarization of the Na+K+-ATPase in epithelia derived from the neuroepithelium. Int Rev Cytol. 1999;185:195–235.

    Article  CAS  PubMed  Google Scholar 

  7. Rizzolo LJ, Zhou S, Li Z-Q. The neural retina maintains integrins in the apical membrane of the RPE early in development. Invest Ophthalmol Vis Sci. 1994;35:2567–76.

    CAS  PubMed  Google Scholar 

  8. Lehmann GL, Benedicto I, Philp NJ, Rodriguez-Boulan E. Plasma membrane protein polarity and trafficking in RPE cells: past, present and future. Exp Eye Res. 2014;126:5–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bok D, O’Day W, Rodriguez-Boulan E. Polarized budding of vesicular stomatitis and influenza virus from cultured human and bovine retinal pigment epithelium. Exp Eye Res. 1992;55:853–60.

    Article  CAS  PubMed  Google Scholar 

  10. Gundersen D, Orlowski J, Rodriguez-Boulan E. Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J Cell Biol. 1991;112:863–72.

    Article  CAS  PubMed  Google Scholar 

  11. Huotari V, Sormunen R, Lehto VP, Eskelinen S. The polarity of the membrane skeleton in retinal pigment epithelial cells of developing chicken embryos and in primary culture. Differentiation. 1995;58:205–15.

    Article  CAS  PubMed  Google Scholar 

  12. Rizzolo LJ, Joshi HC. Apical orientation of the microtubule organizing center and associated γ-tubulin during the polarization of the retinal pigment epithelium in vivo. Dev Biol. 1993;157:147–56.

    Article  CAS  PubMed  Google Scholar 

  13. Rizzolo LJ, Zhou S. The distribution of Na+,K+-ATPase and 5A11 antigen in apical microvilli of the retinal pigment epithelium is unrelated to α-spectrin. J Cell Sci. 1995;108:3623–33.

    CAS  PubMed  Google Scholar 

  14. Goldman EE. Die aussere ind inner sekretion des gesunden und kranken organisimus im lichte der “vitalen farbung”. Beitr Klin Chirurg. 1909;64:192–265.

    Google Scholar 

  15. Goldman EE. Vitalfarbung am zentralnervensystem. Abh Preuss Akad Wiss Phys Math. 1913;1:1–60.

    Google Scholar 

  16. Larre I, Ponce A, Franco M, Cereijido M. The emergence of the concept of tight junctions and physiological regulation by ouabain. Semin Cell Dev Biol. 2014;36(Suppl C):149–56.

    Article  CAS  PubMed  Google Scholar 

  17. Frömter E, Diamond JM. Route of passive ion permeation in epithelia. Nat New Biol. 1972;235:9–13.

    Article  PubMed  Google Scholar 

  18. Powell DW. Barrier function of epithelia. Am J Physiol. 1981;241:G275–G88.

    CAS  PubMed  Google Scholar 

  19. Anderson JM, Cereijido M. Introduction: evolution of ideas on the tight junction. In: Anderson JM, Cereijido M, editors. Tight junctions. 2nd ed. Boca Raton: CRC Press; 2001. p. 1–18.

    Google Scholar 

  20. Rizzolo LJ. Glucose transporters in RPE development. In: Tombran-Tink J, Barnstable C, editors. Ocular transporters in ophthalmic diseases and drug delivery. Totowa: Humana Press; 2008. p. 185–99.

    Chapter  Google Scholar 

  21. Peng S, Adelman RA, Rizzolo LJ. Minimal effects of VEGF and anti-VEGF drugs on the permeability or selectivity of RPE tight junctions. Invest Ophthalmol Vis Sci. 2010;51(6):3216–25.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the barrier properties of the human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011;52(3):1392–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adijanto J, Banzon T, Jalickee S, Wang NS, Miller SS. CO2-induced ion and fluid transport in human retinal pigment epithelium. J Gen Physiol. 2009;133(6):603–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marmor MF, Wolfensberger TJ. The retinal pigment epithelium: function and disease. New York: Oxford University Press; 1998.

    Google Scholar 

  25. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000.

    Google Scholar 

  27. Tout S, Chan-Ling T, Hollander H, Stone J. The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience. 1993;55:291–301.

    Article  CAS  PubMed  Google Scholar 

  28. Rizzolo LJ. Development and role of tight junctions in the retinal pigment epithelium. Int Rev Cytol. 2007;258:195–234.

    Article  CAS  PubMed  Google Scholar 

  29. Wilt SD, Rizzolo LJ. Unique aspects of the blood-brain barrier. In: Anderson JM, Cereijido M, editors. Tight junctions. 2nd ed. Boca Raton: CRC Press; 2001. p. 415–43.

    Google Scholar 

  30. Korte GE, Burns MS, Bellhorn RV. Epithelium-capillary interactions in the eye: the retinal pigment epithelium and the choriocapillaris. Int Rev Cytol. 1989;114:221–48.

    Article  CAS  PubMed  Google Scholar 

  31. Braekevelt CR. Fine structure of the choriocapillaris, Bruch’s membrane and retinal epithelium in the sheep. Anat Embryol (Berl). 1983;166:415–25.

    Article  CAS  Google Scholar 

  32. Korte GE. Choriocapillaris regeneration in the rabbit. Ultrastructure of new endothelial tube formation. Invest Ophthalmol Vis Sci. 1989;30(9):1938–50.

    CAS  PubMed  Google Scholar 

  33. Marmor M. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol. 1999;97(3):239–49.

    Article  CAS  PubMed  Google Scholar 

  34. Scholl S, Kirchhof J, Augustin AJ. Pathophysiology of macular edema. Ophthalmologica. 2010;224(Suppl 1):8–15.

    Article  CAS  PubMed  Google Scholar 

  35. Quinton PM, Wright EM, Tormey JM. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973;58(3):724–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinberg RH, Miller S. Aspects of electrolyte transport in frog pigment epithelium. Exp Eye Res. 1973;16(5):365–72.

    Article  CAS  PubMed  Google Scholar 

  37. Ernst SA, Palacios JR, Siegel GJ. Immunocytochemical localization of Na+, K+-ATPase in mouse choroid plexus. J Histochem Cytochem. 1986;34:189–95.

    Article  CAS  PubMed  Google Scholar 

  38. Masuzawa T, Ohta T, Kawakami K, Sato F. Immunocytochemical localization of Na+, K+-ATPase in the canine choroid plexus. Brain. 1985;108:625–46.

    Article  PubMed  Google Scholar 

  39. Wright EM. Mechanisms of ion transport across the choroid plexus. J Physiol. 1972;226:545–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ostwald TJ, Steinberg RH. Localization of frog retinal pigment epithelium Na+-K+ ATPase. Exp Eye Res. 1980;31(3):351–60.

    Article  CAS  PubMed  Google Scholar 

  41. Gallemore RP, Hughes BA, Miller SS. Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog Retin Eye Res. 1997;16:509–66.

    Article  CAS  Google Scholar 

  42. Wimmers S, Karl MO, Strauss O. Ion channels in the RPE. Prog Retin Eye Res. 2007;26(3):263–301.

    Article  CAS  PubMed  Google Scholar 

  43. Rajasekaran SA, Hu J, Gopal J, Gallemore R, Ryazantsev S, Bok D, Rajasekaran AK. Na,K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Physiol Cell Physiol. 2003;284(6):C1497–507.

    Article  CAS  PubMed  Google Scholar 

  44. Marmorstein AD, Finnemann SC, Bonilha VL, Rodriguez-Boulan E. Morphogenesis of the retinal pigment epithelium: toward understanding retinal degenerative diseases. Ann N Y Acad Sci. 1998;857:1–12.

    Article  CAS  PubMed  Google Scholar 

  45. Okami T, Yamamoto A, Omori K, Takada T, Uyama M, Tashiro Y. Immunocytochemical localization of Na+,K+-ATPase in rat retinal pigment epithelial cells. J Histochem Cytochem. 1990;38:1267–75.

    Article  CAS  PubMed  Google Scholar 

  46. Edelman JL, Sachs G, Adorante JS. Ion transport asymmetry and functional coupling in bovine pigmented and nonpigmented ciliary epithelial cells. Am J Physiol. 1994;266:C1210–C21.

    Article  CAS  PubMed  Google Scholar 

  47. Raviola G, Raviola E. Intercellular junctions in the ciliary epithelium. Invest Ophthalmol Vis Sci. 1978;17:958–81.

    CAS  PubMed  Google Scholar 

  48. Wiederholt M, Helbig H, Korbmacher C. Ion transport across the ciliary epithelium: lessons from cultured cells and proposed role of the carbonic anhydrase. In: Botre F, Gross G, Storey BT, editors. Carbonic anhydrase. New York: Wiley; 1991. p. 232–44.

    Google Scholar 

  49. Coca-Prados M, Fernandez-Cabezudo MJ, Sanchez-Torres J, Crabb JW, Ghosh S. Cell-specific expression of the human Na+,K+-ATPase β2 subunit isoform in the nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci. 1995;36:2717–28.

    CAS  PubMed  Google Scholar 

  50. Ghosh S, Freitag AC, Martin-Vasallo P, Coca-Prados M. Cellular distribution and differential gene expression of the three alpha subunit isoforms of the Na,K-ATPase in the ocular ciliary epithelium. J Biol Chem. 1990;265:2935–40.

    CAS  PubMed  Google Scholar 

  51. Stroeva OG, Mitashov VI. Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol. 1983;83:221–93.

    Article  CAS  PubMed  Google Scholar 

  52. Rizzolo LJ. Barrier properties of cultured retinal pigment epithelium. Exp Eye Res. 2014;126:16–26.

    Article  CAS  PubMed  Google Scholar 

  53. Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30(5):296–323.

    Article  CAS  PubMed  Google Scholar 

  54. Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, Ehalt T, Hammer JA, Miller SS. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci. 2006;47(8):3612–24.

    Article  PubMed  Google Scholar 

  55. Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, Lotfi M, Davis J, Singh D, Rizzolo LJ, Miller S, Temple S, Stern JH. human adult retinal pigment epithelial stem cell-derived RPE monolayers exhibit key physiological characteristics of native tissue. Invest Ophthalmol Vis Sci. 2015;56(12):7085–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miyagishima KJ, Wan Q, Corneo B, Sharma R, Lotfi MR, Boles NC, Hua F, Maminishkis A, Zhang C, Blenkinsop T, Khristov V, Jha BS, Memon OS, D’Souza S, Temple S, Miller SS, Bharti K. In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl Med. 2016;5(11):1562–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C, Sergeev Y, Chen W, Edwards AO, Stambolian D, Abecasis G, Swaroop A, Munson PJ, Miller SS. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum Mol Genet. 2010;19:2468–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao J-L, Yu J, Huang K, Hu J, Diemer T, Ma Z, Dvash T, Yang X-J, Travis GH, Williams DS, Bok D, Fan G. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet. 2010;19(21):4229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng S, Wang S-B, Singh D, Zhao PYC, Davis K, Chen B, Adelman RA, Rizzolo LJ. Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression. Exp Eye Res. 2016;151:1791–89.

    Article  CAS  Google Scholar 

  60. Wang S-B, Xu T, Peng S, Singh D, Ghiassi-Nejad M, Adelman RA, Rizzolo LJ. Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Commun Biol. 2019;2(1):113.

    Google Scholar 

  61. Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a blood-retinal barrier with human embryonic stem cell-derived retinal pigment epithelium: transcriptome and functional analysis. Stem Cells Transl Med. 2013;2(7):534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res. 1996;62(2):155–69.

    Article  CAS  PubMed  Google Scholar 

  63. Samuel W, Jaworski C, Postnikova OA, Kutty RK, Duncan T, Tan LX, Poliakov E, Lakkaraju A, Redmond TM. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Luo Y, Zhuo Y, Fukuhara M, Rizzolo LJ. Effects of culture conditions on heterogeneity and the apical junctional complex of the ARPE-19 cell line. Invest Ophthalmol Vis Sci. 2006;47(8):3644–55.

    Article  PubMed  Google Scholar 

  65. Rizzolo LJ. Polarity and the development of the outer blood-retinal barrier. Histol Histopathol. 1997;12:1057–67.

    CAS  PubMed  Google Scholar 

  66. Rizzolo LJ, Chen X, Weitzman M, Sun R, Zhang H. Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood-retinal barrier. Mol Vis. 2007;13:1259–73.

    CAS  PubMed  Google Scholar 

  67. Bridges CD. Distribution of retinol isomerase in vertebrate eyes and its emergence during retinal development. Vis Res. 1989;29(12):1711–7.

    Article  CAS  PubMed  Google Scholar 

  68. Klein G, Langegger M, Timpl R, Ekblom P. Role of laminin A chain in the development of epithelial cell polarity. Cell. 1988;55:331–41.

    Article  CAS  PubMed  Google Scholar 

  69. Sorokin L, Sonnenberg A, Aumailley M, Timpl R, Ekblom P. Recognition of the laminin E8 cell-binding site by an integrin possessing the α6 subunit is essential for epithelial polarization in developing kidney tubules. J Cell Biol. 1990;111:1265–73.

    Article  CAS  PubMed  Google Scholar 

  70. Stoker AW, Streuli CH, Martins-Green M, Bissell MJ. Designer microenvironments for the analysis of cell and tissue function. Curr Opin Cell Biol. 1990;2:864–74.

    Article  CAS  PubMed  Google Scholar 

  71. Rizzolo LJ. Basement membrane stimulates the polarized distribution of integrins but not the Na,K-ATPase in the retinal pigment epithelium. Cell Regul. 1991;2:939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ban Y, Rizzolo LJ. A culture model of development reveals multiple properties of RPE tight junctions. Mol Vis. 1997;3:18.

    CAS  PubMed  Google Scholar 

  73. Benedicto I, Lehmann GL, Ginsberg M, Nolan DJ, Bareja R, Elemento O, Salfati Z, Alam NM, Prusky GT, Llanos P, Rabbany SY, Maminishkis A, Miller SS, Rafii S, Rodriguez-Boulan E. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nat Commun. 2017;8:15374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grunwald GB. Cadherin cell adhesion molecules in retinal development and Pathology. Prog Retin Eye Res. 1996;15:363–92.

    Article  CAS  Google Scholar 

  75. Liu X, Mizoguchi A, Takeichi M, Honda Y, Ide C. Developmental changes in the subcellular localization of R-cadherin in chick retinal pigment epithelium. Histochem Cell Biol. 1997;108:35–43.

    Article  CAS  PubMed  Google Scholar 

  76. Sandig M, Kalnins VI. Morphological changes in the zonula adhaerens during embryonic development of chick retinal pigment epithelial cells. Cell Tissue Res. 1990;259:455–61.

    Article  CAS  PubMed  Google Scholar 

  77. Sun R, Peng S, Chen X, Zhang H, Rizzolo LJ. Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium. Mol Vis. 2008;14:2237–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahner C, Fukuhara M, Peng S, Kojima S, Rizzolo LJ. The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development. J Cell Sci. 2004;117(Pt 15):3307–18.

    Article  CAS  PubMed  Google Scholar 

  79. Luo Y, Fukuhara M, Weitzman M, Rizzolo LJ. Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions. Brain Res. 2006;1110(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  80. Ban Y, Wilt SD, Rizzolo LJ. Two secreted retinal factors regulate different stages of development of the outer blood-retinal barrier. Brain Res Dev Brain Res. 2000;119:259–67.

    Article  CAS  PubMed  Google Scholar 

  81. Ozanics V, Jakoviec FA. Prenatal development of the eye and its adenexa. In: Jakoviec FA, editor. Ocular anatomy and teratology. Philadelphia: Harper and Row; 1982.

    Google Scholar 

  82. Gamm DM, Melvan JN, Shearer RL, Pinilla I, Sabat G, Svendsen CN, Wright LS. A novel serum-free method for culturing human prenatal retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2008;49(2):788–99.

    Article  PubMed  Google Scholar 

  83. Flannery JG, O’Day W, Pfeffer BA, Horwitz J, Bok D. Uptake, processing and release of retinoids by cultured human retinal pigment epithelium. Exp Eye Res. 1990;51:717–28.

    Article  CAS  PubMed  Google Scholar 

  84. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427–34.

    Article  CAS  PubMed  Google Scholar 

  85. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408.

    Article  CAS  PubMed  Google Scholar 

  86. Sugino IK, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, Rapista A, Johnson AC, Malcuit C, Klimanskaya I, Lanza R, Zarbin MA. Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2011;52(8):4979–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA. Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res. 2005;80(2):235–48.

    Article  CAS  PubMed  Google Scholar 

  88. Tezel TH, Del Priore LV. Repopulation of different layers of host human Bruch’s membrane by retinal pigment epithelial cell grafts. Invest Ophthalmol Vis Sci. 1999;40(3):767–474.

    CAS  PubMed  Google Scholar 

  89. Del Priore LV, Geng L, Tezel TH, Kaplan HJ. Extracellular matrix ligands promote RPE attachment to inner Bruch’s membrane. Curr Eye Res. 2002;25(2):79–89.

    Article  PubMed  Google Scholar 

  90. Tezel TH, Del Priore LV, Kaplan HJ. Reengineering of aged Bruch’s membrane to enhance retinal pigment epithelium repopulation. Invest Ophthalmol Vis Sci. 2004;45(9):3337–48.

    Article  PubMed  Google Scholar 

  91. Sinha D, Phillips J, Joseph Phillips M, Gamm DM. Mimicking retinal development and disease with human pluripotent stem cellsmimicking retinal development and disease. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFf1–9.

    Article  CAS  PubMed  Google Scholar 

  92. Tucker BA, Mullins RF, Streb LM, Anfinson K, Eyestone ME, Kaalberg E, Riker MJ, Drack AV, Braun TA, Stone EM. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. Elife. 2013;2:e00824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Singh D, Wang S-B, Xia T, Tainsh L, Ghiassi-Nejad M, Xu T, Peng S, Adelman RA, Rizzolo LJ. A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials. 2018;154:158–68.

    Article  CAS  PubMed  Google Scholar 

  94. Dermietzel R, Krause D. Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry. Int Rev Cytol. 1991;127:57–109.

    Article  CAS  PubMed  Google Scholar 

  95. Hudspeth AJ, Yee AG. The intercellular junctional complexes of retinal pigment epithelia. Investig Ophthalmol. 1973;12:354–65.

    CAS  Google Scholar 

  96. Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N. Regulation of the blood–biliary barrier: interaction between gap and tight junctions in hepatocytes. Med Electron Microsc. 2003;36(3):157–64.

    Article  PubMed  Google Scholar 

  97. Li MWM, Mruk DD, Lee WM, Cheng CY. Connexin 43 is critical to maintain the homeostasis of the blood-testis barrier via its effects on tight junction reassembly. Proc Natl Acad Sci U S A. 2010;107:17998–8003.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mellman I, Nelson WJ. Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol. 2008;9(11):833–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20(23):3199–214.

    Article  CAS  PubMed  Google Scholar 

  100. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778(3):660–9.

    Article  CAS  PubMed  Google Scholar 

  101. Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions. Trends Cell Biol. 2010;20(3):142–9.

    Article  CAS  PubMed  Google Scholar 

  102. Matter K, Aijaz S, Tsapara A, Balda MS. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol. 2005;17(5):453–8.

    Article  CAS  PubMed  Google Scholar 

  103. Caplan MJ, Seo-Mayer P, Zhang L. Epithelial junctions and polarity: complexes and kinases. Curr Opin Nephrol Hypertens. 2008;17(5):506–12.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. Biochim Biophys Acta. 2008;1778(3):770–93.

    Article  CAS  PubMed  Google Scholar 

  105. Yeaman C, Grindstaff KK, Nelson WJ. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J Cell Sci. 2004;117(4):559–70.

    Article  CAS  PubMed  Google Scholar 

  106. Sasaki H, Matsui C, Furuse K, Mimori-Kiyosue Y, Furuse M, Tsukita S. Dynamic behavior of paired claudin strands within apposing plasma membranes. Proc Natl Acad Sci U S A. 2003;100(7):3971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978;39:219–32.

    Article  CAS  PubMed  Google Scholar 

  108. Kniesel U, Wolburg H. Tight junction complexity in the retinal pigment epithelium of the chicken during development. Neurosci Lett. 1993;149:71–4.

    Article  CAS  PubMed  Google Scholar 

  109. Caldwell RB, Slapnick SM, McLaughlin BJ. Lanthanum and freeze-fracture studies of retinal pigment epithelial cell junctions in the streptozotocin diabetic rat. Curr Eye Res. 1985;4:215–27.

    Article  CAS  PubMed  Google Scholar 

  110. Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS. Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol. 1988;107:2401–8.

    Article  CAS  PubMed  Google Scholar 

  111. Paris L, Bazzoni G. The protein interaction network of the epithelial junctional complex: a system-level analysis. Mol Biol Cell. 2008;19(12):5409–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cummins PM. Occludin: one protein, many forms. Mol Cell Biol. 2012;32(2):242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  CAS  PubMed  Google Scholar 

  114. Van Itallie CM, Colegio OR, Anderson JM. The cytoplasmic tails of claudins can influence tight junction barrier properties through effects on protein stability. J Membr Biol. 2004;199(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  115. Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol. 2008;181(4):683–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sourisseau T, Georgiadis A, Tsapara A, Ali RR, Pestell R, Matter K, Balda MS. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol Cell Biol. 2006;26(6):2387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gonzalez-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta. 2008;1778(3):729–56.

    Article  CAS  PubMed  Google Scholar 

  118. Bentzel CJ, Palant CE, Fromm M. Physiological and pathological factors affecting the tight junction. Boca Raton: CRC Press; 1992.

    Google Scholar 

  119. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11–28.

    Article  CAS  PubMed  Google Scholar 

  120. Le Moellic C, Boulkroun S, Gonzalez-Nunez D, Dublineau I, Cluzeaud F, Fay M, Blot-Chabaud M, Farman N. Aldosterone and tight junctions: modulation of claudin-4 phosphorylation in renal collecting duct cells. Am J Physiol Cell Physiol. 2005;289(6):C1513–21.

    Article  CAS  PubMed  Google Scholar 

  121. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 1999;147(4):891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tsukita S, Furuse M. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol. 2000;149:13–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Elkouby-Naor L, Ben-Yosef T, Kwang WJ. Functions of claudin tight junction proteins and their complex interactions in various physiological systems. Int Rev Cell Mol Biol. 2010;279:1–32. Academic.

    Article  CAS  PubMed  Google Scholar 

  124. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest. 2008;118(2):619–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403–29.

    Article  CAS  PubMed  Google Scholar 

  127. Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol. 2002;283(1):C142–C7.

    Article  CAS  PubMed  Google Scholar 

  128. Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci. 2005;118(Pt 21):5109–18.

    Article  CAS  PubMed  Google Scholar 

  129. Alexandre MD, Jeansonne BG, Renegar RH, Tatum R, Chen YH. The first extracellular domain of claudin-7 affects paracellular Cl- permeability. Biochem Biophys Res Commun. 2007;357(1):87–91.

    Article  CAS  PubMed  Google Scholar 

  130. González-Mariscal L, Domínguez-Calderón A, Raya-Sandino A, Ortega-Olvera JM, Vargas-Sierra O, Martínez-Revollar G. Tight junctions and the regulation of gene expression. Semin Cell Dev Biol. 2014;36:213–23.

    Article  CAS  PubMed  Google Scholar 

  131. Peng S, Gan G, Rao VS, Adelman RA, Rizzolo LJ. Effects of proinflammatory cytokines on the claudin-19 rich tight junctions of human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2012;53(8):5016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burke JM, Hjelmeland LM. Mosaicism of the retinal pigment epithelium: seeing the small picture. Mol Interv. 2005;5(4):241–9.

    Article  PubMed  Google Scholar 

  133. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285(5424):103–6.

    Article  CAS  PubMed  Google Scholar 

  134. Muller D, Kausalya PJ, Claverie-Martin F, Meij IC, Eggert P, Garcia-Nieto V, Hunziker W. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet. 2003;73(6):1293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79(5):949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Naeem M, Hussain S, Akhtar N. Mutation in the tight-junction gene claudin 19 (CLDN19) and familial hypomagnesemia, hypercalciuria, nephrocalcinosis (FHHNC) and severe ocular disease. Am J Nephrol. 2011;34(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  137. Claverie-Martín F, García-Nieto V, Loris C, Ariceta G, Nadal I, Espinosa L, Fernández-Maseda Á, Antón-Gamero M, Avila Á, Madrid Á, González-Acosta H, Córdoba-Lanus E, Santos F, Gil-Calvo M, Espino M, García-Martinez E, Sanchez A, Muley R, RenalTube Group. Claudin-19 mutations and clinical phenotype in spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS One. 2013;8(1):e53151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Al-Shibli A, Konrad M, Altay W, Al Masri O, Al-Gazali L, Al Attrach I. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC): report of three cases with a novel mutation in CLDN19 gene. Saudi J Kidney Dis Transpl. 2013;24(2):338–44.

    Article  PubMed  Google Scholar 

  139. Faguer S, Chauveau D, Cintas P, Tack I, Cointault O, Rostaing L, Vargas-Poussou R, Ribes D. Renal, ocular, and neuromuscular involvements in patients with CLDN19 mutations. Clin J Am Soc Nephrol. 2011;6(2):355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liang GH, Weber CR. Molecular aspects of tight junction barrier function. Curr Opin Pharmacol. 2014;19:84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Balda MS, Whitney JA, Flores C, González S, Cereijido M, Matter K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 1996;134:1031–49.

    Article  CAS  PubMed  Google Scholar 

  142. Ban Y, Rizzolo LJ. Differential regulation of tight junction permeability during development of the retinal pigment epithelium. Am J Physiol. 2000;279:C744–C50.

    Article  CAS  Google Scholar 

  143. Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol. 2001;281(2):C388–97.

    Article  CAS  PubMed  Google Scholar 

  144. Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, Colegio OR, Anderson JM. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121(Pt 3):298–305.

    Article  CAS  PubMed  Google Scholar 

  145. Rochat T, Casale J, Hunninghake GW, Peterson MW. Neutrophil cathepsin G increases permeability of cultured type II pneumocytes. Am J Physiol. 1988;255:C603–11.

    Article  CAS  PubMed  Google Scholar 

  146. van Os C, de Jong MD, Slegers JF. Dimensions of polar pathways through rabbit gallbladder epithelium. The effect of phloretin on nonelectrolyte permeability. J Membr Biol. 1974;15:363–82.

    Article  PubMed  Google Scholar 

  147. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D’Amore PA. Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS One. 2008;3(11):e3554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Reuss L. Epithelial transport. In: Hoffman JF, Jamieson JD, editors. Handbook of physiology section 14: cell physiology. New York: Oxford University Press; 1997. p. 309–88.

    Google Scholar 

  149. Sugita S, Usui Y, Horie S, Futagami Y, Aburatani H, Okazaki T, Honjo T, Takeuchi M, Mochizuki M. T-cell suppression by programmed cell death 1 ligand 1 on retinal pigment epithelium during inflammatory conditions. Invest Ophthalmol Vis Sci. 2009;50(6):2862–70.

    Article  PubMed  Google Scholar 

  150. Hughes BA, Gallemore RP, Miller SS. Transport mechanisms in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium. New York: Oxford University Press; 1998. p. 103–34.

    Google Scholar 

  151. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    Article  CAS  PubMed  Google Scholar 

  152. Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett. 2001;307(2):77–80.

    Article  CAS  PubMed  Google Scholar 

  153. Bunt-Milam AH, Saari JC, Klock IB, Garwin GG. Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest Ophthalmol Vis Sci. 1985;26:1377–80.

    CAS  PubMed  Google Scholar 

  154. Takeuchi A, Kricorian G, Marmor MF. Albumin movement out of the subretinal space after experimental retinal detachment. Invest Ophthalmol Vis Sci. 1995;36(7):1298–305.

    CAS  PubMed  Google Scholar 

  155. Omri S, Omri B, Savoldelli M, Jonet L, Thillaye-Goldenberg B, Thuret G, Gain P, Jeanny JC, Crisanti P, Behar-Cohen F. The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol. 2010;4:183–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. de Smet MD, Okada AA. Cystoid macular edema in uveitis. Dev Ophthalmol. 2010;47:136–47.

    Article  PubMed  Google Scholar 

  157. Vinores SA, Derevjanik NL, Ozaki H, Okamoto N, Campochiaro PA. Cellular mechanisms of blood-retinal barrier dysfunction in macular edema. Doc Ophthalmol. 1999;97(3–4):217–28.

    Article  CAS  PubMed  Google Scholar 

  158. Iacono P, Battaglia Parodi M, Falcomatà B, Bandello F. Central serous chorioretinopathy treatments: a mini review. Ophthalmic Res. 2015;55(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  159. Peng S, Rahner C, Rizzolo LJ. Apical and basal regulation of the permeability of the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003;44:808–17.

    Article  PubMed  Google Scholar 

  160. Chang CW, Ye L, Defoe DM, Caldwell RB. Serum inhibits tight junction formation in cultured pigment epithelial cells. Invest Ophthalmol Vis Sci. 1997;38:1082–93.

    CAS  PubMed  Google Scholar 

  161. Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JR, Raleigh DR, Guan Y, Watson AJM, Montrose MH, Turner JR. Caveolin-1–dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol. 2010;189(1):111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Oshima T, Laroux FS, Coe LL, Morise Z, Kawachi S, Bauer P, Grisham MB, Specian RD, Carter P, Jennings S, Granger DN, Joh T, Alexander JS. Interferon-gamma and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res. 2001;61(1):130–43.

    Article  CAS  PubMed  Google Scholar 

  163. Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol. 2003;171(11):6164–72.

    Article  CAS  PubMed  Google Scholar 

  164. Youakim A, Ahdieh M. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol. 1999;276(5 Pt 1):G1279–88.

    CAS  PubMed  Google Scholar 

  165. Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG. Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell. 2002;13(9):3218–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fish SM, Proujansky R, Reenstra WW. Synergistic effects of interferon gamma and tumour necrosis factor alpha on T84 cell function. Gut. 1999;45(2):191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Li R, Maminishkis A, Banzon T, Wan Q, Jalickee S, Chen S, Miller SS. IFN{gamma} regulates retinal pigment epithelial fluid transport. Am J Physiol Cell Physiol. 2009;297(6):C1452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Miller SS, Maminishkis A, Li R, Adijanto J. Retinal pigment epithelium: cytokine modulation of epithelial physiology. In: Dartt D, editor. Encyclopedia of the eye, vol. 4. Oxford: Academic; 2010. p. 89–100.

    Chapter  Google Scholar 

  169. Madara JL. Regulation of the movement of solutes across tight junctions. Annu Rev Physiol. 1998;60:143–59.

    Article  CAS  PubMed  Google Scholar 

  170. Yang P, McKay BS, Allen JB, Jaffe GJ. Effect of NF-kappa B inhibition on TNF-alpha-induced apoptosis in human RPE cells. Invest Ophthalmol Vis Sci. 2004;45(7):2438–46.

    Article  PubMed  Google Scholar 

  171. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1609):20110330.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. Rizzolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzolo, L.J. (2020). RPE Polarity and Barrier Function. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics