Skip to main content
Log in

Water Pathways in the Bacteriorhodopsin Proton Pump

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Internal water molecules play key roles in the functioning of the light-driven bacteriorhodopsin proton pump. Of particular importance is whether during the proton-pumping cycle the critical water molecule w402 can relocate from the extracellular to the cytoplasmic side of the retinal Schiff base. Here, classical mechanical and combined quantum mechanical/molecular mechanical reaction path computations are performed to investigate pathways and energetic factors influencing w402 relocation. Hydrogen bonding between w402 and the negatively charged Asp85 and Asp212 largely opposes repositioning of the water molecule. In contrast, favorable contributions from hydrogen bonding of w402 with the Schiff base and Thr89 and from the untwisting of the retinal polyene chain lower the energetic cost for water relocation. The delicate balance between the competing contributions underlies the need for highly accurate calculations and structural information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  • Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci USA 106:9244–9249

    Article  CAS  PubMed  Google Scholar 

  • Baudry J, Tajkhorshid E, Molnar E, Phillips J, Schulten K (2001) Molecular dynamics study of bacteriorhodopsin and the purple membrane. J Phys Chem B 105:905–918

    Article  CAS  Google Scholar 

  • Belrhali H, Nollert P, Royant A, Menzel C, Rosenbuch JP, Landau EM, Pebay-Peyroula E (1999) Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7:909–917

    Article  CAS  PubMed  Google Scholar 

  • Bondar AN, Smith JC (2009) Water molecules in short- and long-distance proton transfer steps of bacteriorhodopsin proton pumping. Isr J Chem 48:155–161

    Article  Google Scholar 

  • Bondar AN, Elstner M, Suhai S, Smith JC, Fischer S (2004a) Mechanism of primary proton transfer in bacteriorhodopsin. Structure 12:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Bondar AN, Fischer S, Smith JC, Elstner M, Suhai S (2004b) Key role of electrostatic interactions in bacteriorhodopsin proton transfer. J Am Chem Soc 126:14668–14677

    Article  CAS  PubMed  Google Scholar 

  • Bondar AN, Smith JC, Fischer S (2006) Structural and energetic determinants of primary proton transfer in bacteriorhodopsin. Photochem Photobiol Sci 5:547–552

    Article  CAS  PubMed  Google Scholar 

  • Bondar AN, Suhai S, Fischer S, Smith JC, Elstner M (2007) Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. J Struct Biol 157:454–469

    Article  CAS  PubMed  Google Scholar 

  • Bondar AN, Baudry J, Suhai S, Fischer S, Smith JC (2008) Key role of water molecules in bacteriorhodopsin proton transfer reactions. J Phys Chem B 112:14729–14741

    Article  CAS  PubMed  Google Scholar 

  • Bondar AN, Smith JC, Elstner M (2010) Mechanism of a proton pump analyzed with computer simulations. Theor Chem Acc 125:353–363

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brown LS, Sasaki J, Kandori H, Maeda A, Needleman R, Lanyi JK (1995) Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem 270:27122–27126

    Article  CAS  PubMed  Google Scholar 

  • Bullough PA, Henderson R (1999) The projection structure of the low temperature K intermediate of the bacteriorhodopsin photocycle determined by electron diffraction. J Mol Biol 286:1663–1671

    Article  CAS  PubMed  Google Scholar 

  • Camello C, Pariente JA, Salido GM, Camello PJ (2000) Role of proton gradients and vacuolar H+-ATPases in the refilling of intracellular calcium stores in exocrine cells. Curr Biol 10:161–164

    Article  CAS  PubMed  Google Scholar 

  • Choi C, Elber R (1991) Reaction path study of helix formation in tetrapeptides: effect of sidechains. J Chem Phys 94:751–760

    Article  CAS  Google Scholar 

  • Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B 105:569–585

    Article  CAS  Google Scholar 

  • Dioumaev A, Richter H-T, Brown LS, Tanio M, Tuzi S, Saito H, Kimura Y, Needleman R, Lanyi JK (1998) Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochem 37:2496–2506

    Article  CAS  Google Scholar 

  • Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E, Hajdu J, Neutze R, Landau EM (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401:822–826

    Article  CAS  PubMed  Google Scholar 

  • Edman K, Royant A, Larsson G, Jacobson F, Taylor T, van der Spoel D, Landau EM, Pebay-Peyroula E, Neutze R (2004) Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin. J Biol Chem 279:2147–2158

    Article  CAS  PubMed  Google Scholar 

  • Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge-density-functional tight-binding method for simulations of complex material properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  • Essen LO, Siegert R, Lehman WD, Oesterhelt D (1998) Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin–lipid complex. Proc Natl Acad Sci USA 95:11673–11678

    Article  CAS  PubMed  Google Scholar 

  • Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics. J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  • Fischer S, Karplus M (1992) Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. Chem Phys Lett 194:252–261

    Article  CAS  Google Scholar 

  • Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112

    Article  CAS  PubMed  Google Scholar 

  • Garczarek F, Brown LS, Lanyi JK, Gerwert K (2005) Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci USA 102:3633–3638

    Article  CAS  PubMed  Google Scholar 

  • Gat Y, Sheves M (1993) A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal proteins. A study with model compounds. J Am Chem Soc 115:3772–3773

    Article  CAS  Google Scholar 

  • Grudinin S, Büldt G, Gordeliy V, Baumgartner A (2005) Water molecules and hydrogen-bonded networks in bacteriorhodopsin—molecular dynamics simulations of the ground state and the M-intermediate. Biophys J 88:3252–3261

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Ohmine I (2000) Proton transfer in bacteriorhodopsin: structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method. J Phys Chem B 104:10678–10691

    Article  CAS  Google Scholar 

  • Hendrikson FM, Burkard F, Glaeser RM (1998) Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle. Biophys J 75:1446–1454

    Article  Google Scholar 

  • Herzfeld J, Lansing JC (2002) Magnetic resonance studies of the bacteriorhodopsin pump cycle. Annu Rev Biophys Biomol Struct 31:73–95

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt P, Stockburger M (1984) Role of water in bacteriorhodopsin’s chromophore: resonance Raman study. Biochem 23:5539–5548

    Article  CAS  Google Scholar 

  • Jardón-Valadez E, Bondar AN, Tobias DJ (2010) Coupling of retinal, protein, and water dynamics in squid rhodopsin. Biophys J 99:2200–2207

    Article  PubMed  Google Scholar 

  • Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potentials for simulation of liquid water. J Comp Chem 79:926–935

    CAS  Google Scholar 

  • Kalaidzidis IV, Belevich IN, Kaulen AD (1998) Photovoltage evidence that Glu-204 is the intermediate proton donor rather than the terminal proton release group in bacteriorhodopsin. FEBS Lett 434:197–200

    Article  CAS  PubMed  Google Scholar 

  • Kandori H (2004) Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim Biophys Acta 1658:72–79

    Article  CAS  PubMed  Google Scholar 

  • Kouyama T, Nishikawa T, Tokuhisa T, Okumura H (2004) Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J Mol Biol 335:531–546

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK, Schobert B (2002) Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J Mol Biol 321:727–737

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK, Schobert B (2003) Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2 intermediates of the photocycle. J Mol Biol 328:439–450

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK, Schobert B (2007) Structural changes in the L photointermediate of bacteriorhodopsin. J Mol Biol 365:1379–1392

    Article  CAS  PubMed  Google Scholar 

  • Luecke H (2000) Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochim Biophys Acta 1460:133–156

    Article  CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodospin at 1.55 Å resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Cartailler HTR, Rosengarth A, Needleman R, Janyi JK (2000) Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol 300:1237–1255

    Article  CAS  PubMed  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott RL, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Maeda A, Herzfeld J, Belenky M, Needleman R, Gennis RB, Balashov SP, Ebrey TG (2003) Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Biochemistry 42:14122–14129

    Article  CAS  PubMed  Google Scholar 

  • Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci USA 105:883–888

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, Sakai K, Murakami M, Shiro Y, Adachi S, Okumura H, Kouyama T (2002) Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324:469–481

    Article  CAS  PubMed  Google Scholar 

  • Mefford IN, Wade EU (2009) Proton pump inhibitors as a treatment method for type II diabetes. Med Hypotheses 73:29–32

    Article  CAS  PubMed  Google Scholar 

  • Mellman I (1992) The importance of being acid: the role of acidification in intracellular membrane traffic. J Exp Biol 172:39–45

    CAS  PubMed  Google Scholar 

  • Metz G, Siebert F, Engelhard M (1992) Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin. A solid-state and 13C CP-MAS NMR investigation. FEBS Lett 303:237–241

    Article  CAS  PubMed  Google Scholar 

  • Mullin JM, Gabello M, Murray LJ, Farrel CP, Bellows J, Wolov KR, Kearney KR, Rudolph D, Thornton JJ (2009) Proton pump inhibitors: actions and reactions. Drug Discov Today 14:647–660

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Fuji Y, Enomoto N, Hata M, Hoshino T, Tsuda M (2000) A study on the mechanism of the proton transport in bacteriorhodopsin: the importance of the water molecule. Biophys J 79:982–991

    Article  CAS  PubMed  Google Scholar 

  • Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105:1902–1921

    Article  CAS  Google Scholar 

  • Nina M, Roux B, Smith JC (1995) Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Biophys J 68:25–39

    Article  CAS  PubMed  Google Scholar 

  • Phatak P, Ghosh N, Yu H, Cui Q, Elstner M (2008) Amino acids with an intermolecular proton bond as proton storage site in bacteriorhodopsin. Proc Natl Acad Sci USA 105:19672–19677

    Article  CAS  PubMed  Google Scholar 

  • Phatak P, Frähmke JS, Wanko M, Hoffmann M, Strudel P, Smith JC, Suhai S, Bondar AN, Elstner M (2009) Long-distance proton transfer with a break in the bacteriorhodopsin active site. J Am Chem Soc 131:7064–7078

    Article  CAS  PubMed  Google Scholar 

  • Roux B, Nina M, Pomès R, Smith JC (1996) Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys J 71:670–681

    Article  CAS  PubMed  Google Scholar 

  • Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406:645–648

    Article  CAS  PubMed  Google Scholar 

  • Sass H, Büldt G, Gessenich R, Hehn D, Neff D, Schlesinger R, Berendzen J, Ormos P (2000) Structural alterations for proton translocation in the M state of wild-type bacteriorhdopsin. Nature 406:649–653

    Article  CAS  PubMed  Google Scholar 

  • Schobert B, Cupp-Vickery J, Hornak V, Smith SO, Lanyi JK (2002) Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J Mol Biol 321:715–726

    Article  CAS  PubMed  Google Scholar 

  • Singh UC, Kollman P (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers. J Comput Chem 7:718–730

    Article  CAS  Google Scholar 

  • Subramaniam S, Lindahl M, Bullough P, Faruki AR, Tittor J, Oesterhelt D, Brown L, Lanyi JK, Henderson R (1999) Protein conformational changes in the bacteriorhodopsin photocycle. J Mol Biol 287:145–161

    Article  CAS  PubMed  Google Scholar 

  • Warshel A (1991) Computer modeling of chemical reactions in enzymes and solutions. John Wiley & Sons, New York

    Google Scholar 

  • Wiener MC, White SH (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Tajkhorshid E, Frauenheim T, Suhai S, Elstner M (2002) Performance of the AM1, PM3, and SCC-DFTB methods in the study of conjugated Schiff base models. Chem Phys 277:91–103

    Article  CAS  Google Scholar 

  • Zscherp C, Schlesinger R, Tittor J, Oesterhelt D, Heberle J (1999) In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc Natl Acad Sci USA 96:5498–5503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed in part by the Deutsche Forschungsgemeinschaft (SM 63/7). ANB was supported by grants GM74637 and GM-86685 from the National Institutes of General Medical Sciences. JCS was supported by a Laboratory-Directed Research and Development grant in Systems Biology to Oak Ridge National Laboratory from the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana-Nicoleta Bondar or Jeremy C. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondar, AN., Fischer, S. & Smith, J.C. Water Pathways in the Bacteriorhodopsin Proton Pump. J Membrane Biol 239, 73–84 (2011). https://doi.org/10.1007/s00232-010-9329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9329-3

Keywords

Navigation