Skip to main content

Advertisement

Log in

Gene Transfer: How Can the Biological Barriers Be Overcome?

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Physical methods represent a promising approach for the safe delivery of therapeutic plasmid DNA in genetic and acquired human diseases. However, their development in clinics is limited by their low efficacy. At the cellular level, efficient gene transfer is dependent on several factors including extracellular matrix, plasmid DNA uptake and nucleocytoplasmic transport. We review the main barriers that plasmid DNA encounters from the extracellular environment toward the interior of the cell and the different strategies developed to overcome these biological barriers. Diffusional and metabolic fences of the extracellular matrix and the cytoplasm affect plasmid DNA uptake. These barriers reduce the number of intact plasmids that reach the nucleus. Nuclear uptake of plasmid DNA further requires either an increase of nuclear permeability or an active nuclear transport via the nuclear pore. A better understanding of the cellular and molecular bases of the physical gene-transfer process may provide strategies to overcome those obstacles that highly limit the efficiency and use of gene-delivery methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aihara H, Miyazaki JI (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  PubMed  CAS  Google Scholar 

  • Alexandrakis G, Brown EB, Tong RT, McKee TD, Campbell RB, Boucher T et al (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10:203–207

    Article  PubMed  CAS  Google Scholar 

  • Alino SF, Herrero MJ, Noguera I, Dasi F, Sanchez M (2007) Pig liver gene therapy by non-invasive interventionist catheterism. Gene Ther 14:334–343

    Article  PubMed  CAS  Google Scholar 

  • Andre FM, Cournil-Henrionnet C, Vernerey D, Opolon P, Mir LM (2006) Variability of naked DNA expression after direct local injection: the influence of the injection speed. Gene Ther 13:1619–1627

    Article  PubMed  CAS  Google Scholar 

  • Ardehali A, Fyfe A, Laks H, Drinkwater DC Jr, Qiao JH, Lusis AJ (1995) Direct gene transfer into donor hearts at the time of harvest. J Thorac Cardiovasc Surg 109:716–720

    Article  PubMed  CAS  Google Scholar 

  • Babiuk S, Baca-Estrada ME, Foldvari M, Storms M, Rabussay D, Widera G, Babiuk LA (2002) Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 20:3399–3408

    Article  PubMed  CAS  Google Scholar 

  • Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  PubMed  CAS  Google Scholar 

  • Berrier AL, Yamada KM (2007) Cell–matrix adhesion. J Cell Physiol 213:565–573

    Article  PubMed  CAS  Google Scholar 

  • Bloquel C, Bejjani R, Bigey P, Bedioui F, Doat M, BenEzra D, Scherman D, Behar-Cohen F (2006) Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF-α soluble receptor in uveitis. FASEB J 20:389–391

    PubMed  CAS  Google Scholar 

  • Bloquel C, Denys A, Boissier MC, Apparailly F, Bigey P, Scherman D, Bessis N (2007) Intra-articular electrotransfer of plasmid encoding soluble TNF receptor variants in normal and arthritic mice. J Gene Med 9:986–993

    Article  PubMed  CAS  Google Scholar 

  • Broeke AV, Burny A (2003) Retroviral vector biosafety: lessons from sheep. J Biomed Biotechnol 2003:9–12

    Article  PubMed  Google Scholar 

  • Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J (2005) Electroporation as a “prime/boost” strategy for naked DNA vaccination against a tumor antigen. J Immunol 174:6292–6298

    PubMed  CAS  Google Scholar 

  • Budker V, Budker T, Zhang G, Subbotin V, Loomis A, Wolff JA (2000) Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med 2:76–88

    Article  PubMed  CAS  Google Scholar 

  • Bureau MF, Naimi S, Torero Ibad R, Seguin J, Georger C, Arnould E, Maton L, Blanche F, Delaere P, Scherman D (2004) Intramuscular plasmid DNA electrotransfer. Biodistribution and degradation. Biochim Biophys Acta 1676:138–148

    PubMed  CAS  Google Scholar 

  • Cartier R, Ren SV, Walther W, Stein U, Lewis A, Schlag PM, Li M, Furth PA (2000) In vivo gene transfer by low-volume jet injection. Anal Biochem 282:262–265

    Article  PubMed  CAS  Google Scholar 

  • Chang ML, Chen JC, Yeh CT, Chang MY, Liang CK, Chiu CT, Lin DY, Liaw YF (2008) Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes. Hum Gene Ther 19:391–395

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Ziegelhoffer PR, Yang NS (1993) In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA 90:4455–4459

    Article  PubMed  CAS  Google Scholar 

  • Chida K, Sueyoshi R, Kuroki T (1998) Efficient and stable gene transfer following microinjection into nuclei of synchronized animal cells progressing from G1/S boundary to early S phase. Biochem Biophys Res Commun 249:849–852

    Article  PubMed  CAS  Google Scholar 

  • Choate KA, Khavari PA (1997) Direct cutaneous gene delivery in a human genetic skin disease. Hum Gene Ther 8:1659–1665

    Article  PubMed  CAS  Google Scholar 

  • Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ (2007) Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J 21:2510–2519

    Article  PubMed  CAS  Google Scholar 

  • Collins E, Birchall JC, Williams JL, Gumbleton M (2007) Nuclear localisation and pDNA condensation in non-viral gene delivery. J Gene Med 9:265–274

    Article  PubMed  CAS  Google Scholar 

  • Connolly R, Lopez G, Wegerif GD, Hoff AM, Jaroszeski MJ (2009) Effects of plasma mediated molecular delivery. XXth international symposium on bioelectrochemistry and bioenergetics, Romania

  • Curcio C, Khan AS, Spadaro M, Quaglino E, Cavallo F, Forni G, Draghia-Akli R (2008) DNA immunization using constant-current electroporation affords long-term protection from autochthonous mammary carcinomas in cancer-prone transgenic mice. Cancer Gene Ther 15:108–114

    Article  PubMed  CAS  Google Scholar 

  • Dayball K, Millar J, Miller M, Wan YH, Bramson J (2003) Electroporation enables plasmid vaccines to elicit CD8+ T cell responses in the absence of CD4+ T cells. J Immunol 171:3379–3384

    PubMed  CAS  Google Scholar 

  • Dean DA (2005) Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am J Physiol Cell Physiol 289:233–245

    Article  CAS  Google Scholar 

  • Dietrich A, Becherer L, Brinckmann U, Hauss J, Liebert UG, Gutz A, Aust G (2006) Particle-mediated cytokine gene therapy leads to antitumor and antimetastatic effects in mouse carcinoma models. Cancer Biother Radiopharm 21:333–341

    Article  PubMed  CAS  Google Scholar 

  • Dileo J, Miller TE, Chesnoy S, Huang L (2003) Gene transfer to subdermal tissues via a new gene gun design. Hum Gene Ther 14:79–87

    Article  PubMed  CAS  Google Scholar 

  • Dowty ME, Williams P, Zhang G, Hagstrom JE, Wolff JA (1995) Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci USA 92:4572–4576

    Article  PubMed  CAS  Google Scholar 

  • Dubensky TW, Campbell BA, Villarreal LP (1984) Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci USA 81:7529–7533

    Article  PubMed  CAS  Google Scholar 

  • Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, Otten GR, Ulmer JB, Donnelly JJ, Ott G, MacDonald DM (2000) Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 165:2850–2858

    PubMed  CAS  Google Scholar 

  • Duvhani-Eshet M, Baruch L, Kesselman E, Shimoni E, Machluf M (2006) Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Ther 13:163–172

    Article  CAS  Google Scholar 

  • Eastman SJ, Baskin KM, Hodges BL, Chu Q, Gates A, Dreusicke R, Anderson S, Scheule RK (2002) Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum Gene Ther 13:2065–2077

    Article  PubMed  CAS  Google Scholar 

  • Escoffre JM, Dean DS, Hubert M, Rols MP, Favard C (2007) Membrane perturbation by an external electric field: a mechanism to permit molecular uptake. Eur Biophys J 36:973–983

    Article  PubMed  CAS  Google Scholar 

  • Escoffre JM, Debin A, Reynes JP, Drocourt D, Tiraby G, Hellaudais L, Teissie J, Golzio M (2008) Long-lasting in vivo gene silencing by electrotransfer of shRNA expressing plasmid. Technol Cancer Res Treat 7:109–116

    PubMed  CAS  Google Scholar 

  • Escoffre JM, Portet T, Wasungu L, Teissié J, Dean D, Rols MP (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41:286–295

    Article  PubMed  CAS  Google Scholar 

  • Evans V, Foster H, Graham IR, Foster K, Athanasopoulos T, Simons JP, Dickson G, Owen JS (2008) Human apolipoprotein E expression from mouse skeletal muscle by electrotransfer of nonviral DNA (plasmid) and pseudotyped recombinant adeno-associated virus (AAV2/7). Hum Gene Ther 19:569–578

    Article  PubMed  CAS  Google Scholar 

  • Faurie C, Golzio M, Moller P, Teissie J, Rols MP (2003) Cell and animal imaging of electrically mediated gene transfer. DNA Cell Biol 22:777–783

    Article  PubMed  CAS  Google Scholar 

  • Faurie C, Phez E, Golzio M, Vossen C, Lesbordes JC, Delteil C, Teissie J, Rols MP (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochim Biophys Acta 1665:92–100

    Article  PubMed  CAS  Google Scholar 

  • Favre D, Cherel Y, Provost N, Blouin V, Ferry N, Moullier P, Salvetti A (2000) Hyaluronidase enhances recombinant adeno-associated virus (rAAV)-mediated gene transfer in the rat skeletal muscle. Gene Ther 7:1417–1420

    Article  PubMed  CAS  Google Scholar 

  • Furth PA, Shamay A, Wall RJ, Hennighausen L (1992) Gene transfer into somatic tissues by jet injection. Anal Biochem 205:365–368

    Article  PubMed  CAS  Google Scholar 

  • Furth PA, Shamay A, Hennighausen L (1995) Gene transfer into mammalian cells by jet injection. Hybridoma 14:149–152

    Article  PubMed  CAS  Google Scholar 

  • Gaffal E, Schweichel D, Tormo D, Steitz J, Lenz J, Basner-Tschakarjan E, Limmer A, Tuting T (2007) Comparative evaluation of CD8+ CTL responses following gene gun immunization targeting the skin with intracutaneous injection of antigen-transduced dendritic cells. Eur J Cell Biol 86:817–826

    Article  PubMed  CAS  Google Scholar 

  • Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P (2005) Vectors and delivery systems in gene therapy. Med Sci Monit 11:RA110–RA121

    PubMed  CAS  Google Scholar 

  • Ghochikyan A, Vasilevko V, Petruschina I, Movsesyan N, Babikyan D, Tian W, Sadzikava N, Ross TM, Head E, Cribbs DH, Agadjanyan MG (2003) Generation and characterization of the humoral immune response to DNA immunization with a chimeric Aβ-interleukine 4 minigene. Eur J Immunol 33:3232–3241

    Article  PubMed  CAS  Google Scholar 

  • Glasspool-Malone J, Malone RW (1999) Marked enhancement of direct respiratory tissue transfection by aurintricarboxylic acid. Hum Gene Ther 10:1703–1713

    Article  PubMed  CAS  Google Scholar 

  • Glasspool-Malone J, Somiari S, Drabick JJ, Malone RW (2000) Efficient nonviral cutaneaous transfection. Mol Ther 2:140–146

    Article  PubMed  CAS  Google Scholar 

  • Glasspool-Malone J, Steenland PR, McDonald RJ, Sanchez RA, Watts TL, Zabner J, Malone RW (2002) DNA transfection of macaque and murine respiratory tissue is greatly enhanced by use of a nuclease inhibitor. J Gene Med 4:323–332

    Article  PubMed  Google Scholar 

  • Golzio M, Teissie J, Rols MP (2002) Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field. Biochim Biophys Acta 1563:23–28

    Article  PubMed  CAS  Google Scholar 

  • Golzio M, Rols MP, Teissie J (2004) In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods 32:126–135

    Article  CAS  Google Scholar 

  • Golzio M, Mazzolini L, Moller P, Rols MP, Teissié J (2005) Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther 12:246–251

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Nishi T, Tamura T, Dev SB, Takeshima H, Kochi M, Yoshizato K, Kuratsu J, Sakata T, Hofmann GA, Ushio Y (1999) Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 97:354–359

    Article  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf WJ, Bolander ME, Sarkar G (1998) Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 24:587–595

    Article  PubMed  CAS  Google Scholar 

  • Grosel A, Sersa G, Kranjc S, Cemazar M (2006) Electrogene therapy with p53 of murine sarcomas alone or combined with electrochemotherapy using cisplatin. DNA Cell Biol 25:674–683

    Article  PubMed  CAS  Google Scholar 

  • Habib N, Havlik R, Jiao L, Kiri A, Jensen S, Nicholls J, Sarraf C, Goldspink G, Davies A, Slavik L, Wood C, Tiraby M, Drocourt D, Reynes JP, Smadja C, Tiraby JG (2004) Combination of optison with ultrasound and electroporation increases albumin and thrompoietin transgene expression whilst elongation factor promoter prolongs its duration. Gene Ther Mol Biol 8:1–8

    Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003a) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003b) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256

    Article  PubMed  Google Scholar 

  • Hauff P, Seemann S, Reszka R (2005) Evaluation of gas-filled microparticles and sonoporation as gene delivery systems: feasibility study in rodent tumor models. Radiology 236:572–578

    Article  PubMed  Google Scholar 

  • Heansler J, Verdelet C, Sanchez V, Girerd-Chambaz Y, Bonnin A, Trannoy E, Krishnan S, Meulien P (1999) Intradermal DNA immunization by using jet injectors in mice and monkeys. Vaccine 17:628–638

    Article  Google Scholar 

  • Heller R, Jaroszeski M, Atkin A, Moradpour D, Gilbert R, Wands J, Nicolau C (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett 389:225–228

    Article  PubMed  CAS  Google Scholar 

  • Heller L, Merkler K, Westover J, Cruz Y, Coppola D, Benson K, Daud A, Heller R (2006) Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin Cancer Res 12:3177–3183

    Article  PubMed  CAS  Google Scholar 

  • Herweijer H, Wolff JA (2007) Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther 14:99–107

    PubMed  CAS  Google Scholar 

  • Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB (2008) Intradermal/cutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine 26:440–448

    Article  PubMed  CAS  Google Scholar 

  • Holzbach T, Vlaskou D, Neshkova I, Konerding MA, Wortler K, Mykhaylyk O, Gansbacher B, Machens HG, Plank C, Giunta RE (2010) Non-viral VEGF gene therapy—magnetofection of acoustically active magnetic liposphere (magnetobubbles) increases tissue-survival in an oversized skin flap model. J Cell Mol Med 14:587–599

    PubMed  CAS  Google Scholar 

  • Huttinger C, Hirschberger J, Jahnke A, Kostlin R, Brill T, Plank C, Kuchenhoff H, Krieger S, Schillinger U (2008) Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J Gene Med 10:655–667

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2003) Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl 86:555–558

    PubMed  CAS  Google Scholar 

  • Isaka Y, Yamada K, Takabatake Y, Mizui M, Miura-Tsujie M, Ichimaru N, Yazawa K, Utsugi R, Okuyama A, Hori M, Imai E, Takahara S (2005) Electroporation-mediated HGF gene transduction protected the kidney against graft injury. Gene Ther 12:815–820

    Article  PubMed  CAS  Google Scholar 

  • Jaroszeski MJ, Connolly R, Wegerif GD, Lopez G, Ugen K, Hoff AM (2009) Plasma based method for augmenting DNA delivery to skin. XXth international symposium on bioelectrochemistry and bioenergetics, Romania

  • Jayankura M, Boggione C, Frisén C, Boyer O, Fouret P, Saillant G, Klatzmann D (2003) In situ gene transfer into animal tendons by injection of naked DNA and electrotransfer. J Gene Med 5:618–624

    Article  PubMed  CAS  Google Scholar 

  • Kalat M, Kupcu Z, Schuller S, Zalusky D, Zehetner M, Paster W, Schweighoffer T (2002) In vivo plasmid electroporation induces tumor antigen-specific CD8+ T-cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res 62:5489–5494

    PubMed  CAS  Google Scholar 

  • Kamau SW, Hassa PO, Steitz B, Petri-Fink A, Hofmann H, Hofmann-Amtenbrink M, von Rechenberg B, Hottiger MO (2006) Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 34:e40

    Article  PubMed  CAS  Google Scholar 

  • Karshafian R, Bevan PD, Williams R, Samac S, Burns PN (2009) Sonoporation by ultrasound-activated microbubble contrast: effect of acoustic exposure parameters on cell membrane permeability and cell viability. Ultrasound Med Biol 35:847–860

    Article  PubMed  Google Scholar 

  • Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Kawase A, Nomura T, Yasuda K, Kobayashi N, Hashida M, Takakura Y (2003) Disposition and gene expression characteristics in solid tumors and skeletal muscle after direct injection of nake plasmid DNA in mice. J Pharm Sci 92:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K, Noma T, Namba T, Kohno M (2004) Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer. J Am Coll Cardiol 44:644–653

    Article  PubMed  CAS  Google Scholar 

  • Krassowka W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  CAS  Google Scholar 

  • Kurata S, Tsukahoshi M, Kasuya T, Ikawa Y (1986) The laser method for efficient introduction of foreingh DNA into cultured cells. Exp Cell Res 162:372–378

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama N, Kuriyama H, Julin CM, Lamborn KR, Israel MA (2001) Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model. Cancer Res 61:1805–1809

    PubMed  CAS  Google Scholar 

  • Lechardeur D, Lukacs GL (2002) Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2:183–194

    Article  PubMed  CAS  Google Scholar 

  • Lechardeur D, Lukacs GL (2006) Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum Gene Ther 17:882–889

    Article  PubMed  CAS  Google Scholar 

  • Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O’Brodovich H, Lukacs GL (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6:482–497

    Article  PubMed  CAS  Google Scholar 

  • Lehrman S (1999) Virus treatment questioned after gene therapy death. Nature 401:517–518

    Article  PubMed  CAS  Google Scholar 

  • Lemieux P, Guérin N, Paradis G, Proulx R, Chistyakova L, Kabanov A, Alakhov V (2000) A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther 7:987–991

    Article  CAS  Google Scholar 

  • Lentacker I, Vandenbroucke RE, Lucas B, Demeester J, Smedt SC, Sanders NN (2008) New strategies for nucleic acid delivery to conquer cellular and nuclear membranes. J Control Release 132:279–288

    Article  PubMed  CAS  Google Scholar 

  • Lesbordes JC, Bordet T, Haase G, Castelnau-Ptakhine L, Rouhani S, Gilgenkrantz H, Kahn A (2002) In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum Mol Genet 11:1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Li T, Tachibana K, Kuroki M (2003) Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice-initial results. Radiology 229:423–428

    Article  PubMed  Google Scholar 

  • Liang KW, Nishikawa M, Liu F, Sun B, Ye Q, Huang L (2004) Restoration of dystrophin expression in mdx mice by intravascular injection of naked DNA containing full-length dystrophin cDNA. Gene Ther 11:901–908

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Huang L (2002) Electric gene transfer to the liver following systemic administration of plasmid DNA. Gene Ther 9:1116–1119

    Article  PubMed  CAS  Google Scholar 

  • Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman GL (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    Article  PubMed  CAS  Google Scholar 

  • Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286:2244–2245

    Article  PubMed  CAS  Google Scholar 

  • McMahon JM, Signori E, Wells KE, Fazio VM, Wells DJ (2001) Optimization of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase—increased expression with reduced muscle damage. Gene Ther 8:1264–1270

    Article  PubMed  CAS  Google Scholar 

  • Meiher-Humber S, Bettinger T, Yan F, Guy RH (2005a) Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 104:213–222

    Article  CAS  Google Scholar 

  • Meiher-Humber S, Bettinger T, Yan F, Guy RH (2005b) Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J Control Release 104:203–211

    Article  CAS  Google Scholar 

  • Mennuni C, Calvaruso F, Zampaglione I, Rizzuto G, Rinaudo D, Dammassa E, Ciliberto G, Fattori E, La Monica N (2002) Hyaluronidase increases electrogene transfer efficiency in skeletal muscle. Hum Gene Ther 13:355–365

    Article  PubMed  CAS  Google Scholar 

  • Mesojednik S, Pavlin D, Sersa G, Coer A, Kranjc S, Grosel A, Tevz G, Cemazar M (2007) The effect of the histological properties of tumors on translocation efficiency of electrically assisted gene delivery to solid tumors in mice. Gene Ther 14:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P, Crum LA (2005) Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 16:893–905

    Article  PubMed  CAS  Google Scholar 

  • Miller AM, Dean DA (2008) Cell-specific nuclear import of plasmid DANN in smooth muscle requires tissue-specific transcription factors and DNA sequences. Gene Ther 15:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Miller AM, Dean DA (2009) Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev 61:603–613

    Article  PubMed  CAS  Google Scholar 

  • Mir B, Piedrahita JA (2004) Nuclear localization signal and cell synchrony enhance gene targeting efficiency in primary fetal fibroblasts. Nucleic Acids Res 32:e25

    Article  PubMed  CAS  Google Scholar 

  • Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  PubMed  CAS  Google Scholar 

  • Molnar MJ, Gilbert R, Lu Y, Liu AB, Guo A, Larochelle N, Orlopp K, Lochmuller H, Petrof BJ, Nalbantoglu J, Karpati G (2004) Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther 10:447–455

    Article  PubMed  CAS  Google Scholar 

  • Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503

    PubMed  CAS  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    PubMed  CAS  Google Scholar 

  • Newmann CMH, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  CAS  Google Scholar 

  • Nicol F, Wong M, MacLaughlin FC, Perrard J, Wilson E, Nordstrom JL, Smith LC (2002) Poly-l-glutamate, an anionic polymer, enhances transgene expression for plasmids delivered by intramuscular injection with in vivo electroporation. Gene Ther 9:1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Nishikage S, Koyama H, Miyata T, Ishii S, Hamada H, Shigematsu H (2004) In vivo electroporation enhances plasmid-based gene transfer of basic fibroblast growth factor for the treatment of ischemic limb. J Surg Res 120:37–46

    Article  PubMed  CAS  Google Scholar 

  • Payen E, Bettan M, Rouyer-Fessard P, Beuzard Y, Scherman D (2001) Improvement of mouse β-thalassemia by electrotransfer of erythropoietin cDNA. Exp Hematol 29:295–300

    Article  PubMed  CAS  Google Scholar 

  • Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA, Jain RK (2001) Role of tumor–host interactions in interstitial diffusion of macromolecules: cranial vs subcutaneous tumors. Proc Natl Acad Sci USA 98:4628–4633

    Article  PubMed  CAS  Google Scholar 

  • Pollard H, Toumaniantz G, Amos JL, Avet-Loiseau H, Guihard G, Behr JP, Escande D (2001) Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 3:153–164

    Article  PubMed  CAS  Google Scholar 

  • Postema M, van Wamel A, Ten Cate FJ, de Jong N (2004) High-speed photography during ultrasound illustrated potential therapeutic applications of microbubbles. Med Phys 32:3707–3711

    Article  Google Scholar 

  • Ribbeck K, Gorlich D (2002) The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 21:2664–2671

    Article  PubMed  CAS  Google Scholar 

  • Riera M, Chillon M, Aran JM, Cruzado JM, Torras J, Grinyo JM, Fillat C (2004) Intramuscular SP1017-formulated DNA electrotransfer enhances transgene expression and distributes hHGF to different rat tissues. J Gene Med 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Rols MP, Delteil C, Golzio M, Teissie J (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Nakatsuji N (2001) Efficient gene transfer into embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  PubMed  CAS  Google Scholar 

  • Sawamura D, Ina S, Itai K, Meng X, Kon A, Tamai K, Hanada K, Hashimoto I (1999) In vivo gene introduction into keratinocytes using jet injection. Gene Ther 6:1785–1787

    Article  PubMed  CAS  Google Scholar 

  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  PubMed  CAS  Google Scholar 

  • Schertzer JD, Plant DR, Lynch GS (2006) Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Mol Ther 13:795–803

    Article  PubMed  CAS  Google Scholar 

  • Schwartz B, Benoist C, Abdallah B, Rangara R, Hassan A, Scherman D, Demeneix BA (1996) Gene transfer by naked DNA into adult mouse brain. Gene Ther 3:186–196

    Google Scholar 

  • Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecules-sized solutes in cytoplasm and nucleus. J Cell Biol 138:131–142

    Article  PubMed  CAS  Google Scholar 

  • Shibata MA, Moritomo J, Otsuki Y (2002) Suppression of murine mammary carcinoma growth and metastasis by HSVtk/GCV gene therapy using in vivo electroporation. Cancer Gene Ther 9:16–27

    Article  PubMed  CAS  Google Scholar 

  • Sikes ML, O’Malley BW Jr, Finegold MJ, Ledley FD (1994) In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum Gene Ther 5:837–844

    Article  PubMed  CAS  Google Scholar 

  • Smith KC, Neu JC, Krassowska W (2004) Model of creation and evolution of stable electropores for DNA delivery. Biophys J 86:2813–2816

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic I (2003) Extracellular matrix modelling: the role of matrix metalloproteinases. J Pathol 200:448–464

    Article  PubMed  CAS  Google Scholar 

  • Stein U, Walther W, Stege A, Kaszubiak A, Fichtner I, Lage H (2007) Complete in vivo reversal of the multidrug resistance phenotype by jet injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther 16:178–186

    Article  PubMed  CAS  Google Scholar 

  • Stephens DJ, Pepperkok R (2001) The many ways to cross the plasma membrane. Proc Natl Acad Sci USA 98:4295–4298

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YuA (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Sawamura K, Tanaka K, Namai E, Oda Y, Matsumura Y, Maruyama K (2008) Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J Control Release 125:137–144

    Article  PubMed  CAS  Google Scholar 

  • Takehara T, Uemura A, Tatsumi T, Suzuki T, Kimura R, Shiotani A, Ohkawa K, Kanto T, Hiramatsu N, Hayashi N (2007) Natural killer cell-mediated ablation of metastatic liver tumors by hydrodynamic injection of IFN-γ gene to mice. Int J Cancer 15:1252–1260

    Article  CAS  Google Scholar 

  • Tao W, Wilkinson J, Stanbridge EJ, Berns MW (1987) Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc Natl Acad Sci USA 84:4180–4184

    Article  PubMed  CAS  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4015–4053

    Article  CAS  Google Scholar 

  • Teissié J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280

    PubMed  Google Scholar 

  • Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    Article  PubMed  CAS  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  PubMed  Google Scholar 

  • Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–134

    PubMed  CAS  Google Scholar 

  • Tran TA, Roger S, Le Guennec JY, Tranquart F, Bouakaz A (2006) Effect of ultrasound-activated microbubbles on the cell electrophysiological properties. Ultrasound Med Biol 33:158–163

    Article  Google Scholar 

  • Tsen SW, Wu CY, Meneshian A, Pai SI, Hung CF, Wu TC (2009) Femtosecond laser treatment enhances DNA transfection efficiency in vivo. J Biomed Sci 16:36

    Article  PubMed  CAS  Google Scholar 

  • Tupin E, Poirier B, Bureau MF, Khallou-Lashet J, Vranckx R, Caligiuri G, Gastion AT, Duong Van Huyen JP, Scherman D, Bariéty J, Michel JB, Nicolleti A (2003) Non-viral gene transfer of murine spleen cells achieved. Gene Ther 10:569–579

    Article  PubMed  CAS  Google Scholar 

  • van Wamel A, Bouakaz A, Versluis M, de Jong N (2004) Micromanipulation of endothelial cells: ultrasound-microbubble-cell interaction. Ultrasound Med Biol 30:1255–1258

    Article  PubMed  Google Scholar 

  • Vandenbroucke RE, Lucas B, Demeester J, Smedt SC, Sanders NN (2007) Nuclear accumulation of plasmid DNA can be enhanced by non-selective gating of the nuclear pore. Nucleic Acids Res 35:e86

    Article  PubMed  CAS  Google Scholar 

  • Vandermeulen G, Staes E, Vanderhaeghen ML, Bureau MF, Scherman D, Préat V (2007) Optimisation of intradermal DNA electrotransfer for immunisation. J Control Res 124:81–87

    Article  CAS  Google Scholar 

  • Vaughan EE, DeGiulio JV, Dean DA (2006) Intracellular trafficking of plasmids for gene therapy mechanisms of cytoplasmic movement and nuclear import. Curr Gene Ther 6:671–681

    Article  PubMed  CAS  Google Scholar 

  • Waehler R, Russel SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Stein U, Fichtner I, Malcherek L, Lemm M, Schlag PM (2001) Nonviral in vivo gene delivery into tumors using a novel low volume jet injection technology. Gene Ther 8:173–180

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Stein U, Fichtner I, Voss C, Schmidt T, Schleef M, Nellessen T, Schlag PM (2002) Intratumoral low-volume jet injection for efficient nonviral gene transfer. Mol Biotechnol 21:105–115

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Stein U, Siegel R, Fichtner I, Schlag PM (2005a) Use of the nuclease inhibitor aurintricarboxylic acid (ATA) for improved non-viral intratumoral in vivo gene transfer by jet injection. J Gene Med 7:477–485

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Stein U, Fichtner I, Kobelt D, Aumann J, Arlt F, Schlag PM (2005b) Nonviral jet injection gene transfer for efficient in vivo cytosine deaminase suicide gene therapy of colon carcinoma. Mol Ther 12:1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Minow T, Martin R, Fichtner I, Schlag PM, Stein U (2006) Uptake, biodistribution, and time course of naked plasmid DNA trafficking after intratumoral in vivo jet injection. Hum Gene Ther 17:611–624

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Siegel R, Kobelt D, Knosel T, Dietel M, Bembenek A, Aumann J, Schleef M, Baier R, Stein U, Schlag PM (2008) Novel jet injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin Cancer Res 14:7545–7553

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Murakami T, Yoshida S, Matsuoka H, Ishii A, Tanaka T, Tobita K, Ohtsuki M, Nakagawa H, Kusama M, Kobayashi E (2003) Predominant cell-mediated immunity in the oral mucosa: gene gun-based vaccination against infectious diseases. J Dermatol Sci 31:203–210

    Article  PubMed  CAS  Google Scholar 

  • Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M, Leung L, Otten GR, Thudium K, Selby MJ, Ulmer JB (2000) Increased DNA vaccine delivery and immunigenicity by electroporation in vivo. J Immunol 164:4635–4640

    PubMed  CAS  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, Geddes DM, Plank C, Alton EW (2006) Using magnetic forces to enhance non-viral gene transfer airway epithelium in vivo. Gene Ther 13:1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Shimada M, Tachibana K, Harimoto N, Tsujita E, Shirabe K, Miyazaki J, Sugimachi K (2002) In vivo gene transfer into muscle via electro-sonoporation. Hum Gene Ther 13:2079–2084

    Article  PubMed  CAS  Google Scholar 

  • Yazawa H, Murakami T, Li HM, Back T, Kurosaka K, Suzuki Y, Shorts L, Akiyama Y, Maruyama K, Parsoneault E, Wiltrout RH, Watanabe M (2006) Hydrodynamics-based gene delivery of naked DNA coding fetal liver kinase-1 gene effectively suppresses the growth of pre-existing tumors. Cancer Gene Ther 13:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Yoon CS, Jung HS, Kwon MJ, Lee SH, Kim CW, Kim MK, Lee M, Park JH (2009) Sonoporation of the minicircle-VEGF(165) for wound healing of diabetic mice. Pharm Res 26:794–801

    Article  PubMed  CAS  Google Scholar 

  • Young JL, Zimmer WE, Dean DA (2008) Smooth muscle-specific gene delivery in the vasculature based on restriction of DNA nuclear import. Exp Biol Med 233:840–848

    Article  CAS  Google Scholar 

  • Zeira E, Manevitch A, Manevitch Z, Kedar E, Gropp M, Daudi N, Barsuk R, Harati M, Yotvat H, Troilo PJ, Griffiths TG 2nd, Pacchione SJ, Roden DF, Niu Z, Nussbaum O, Zamir G, Papo O, Hemo I, Lewis A, Galun E (2003) Femtosecond infrared laser—an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 8:342–350

    Article  PubMed  CAS  Google Scholar 

  • Zeira E, Manevitch A, Manevitch Z et al (2007) Femtosecond laser: a new intradermal DNA delivery method for efficient, long-term gene expression and genetic immunization. FASEB J 21:3522–3533

    Article  PubMed  Google Scholar 

  • Zhang G, Budker V, Williams P, Subbotin V, Wolff JA (2001) Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhumans primates. Hum Gene Ther 12:427–438

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11:675–682

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Divangahi M, Ngai P, Santosuosso M, Millar J, Zganiacz A, Wang J, Bramson J, Xing Z (2007) Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine 25:1342–1352

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Dean DA (2007) Gene transfer of interleukine 10 to the murine cornea using electroporation. Exp Biol Med 232:362–369

    CAS  Google Scholar 

  • Zhou R, Norton JE, Zhang N, Dean DA (2007) Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Ther 14:775–780

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks are due to the financial support from the CNRS, the Association Française sur les Myopathies, the ANR “Cemirbio,” the ANR “CMIDT” and the Région Midi-Pyrénées. J.-M. E. was the recipient of a PhD fellowship of the French government

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Rols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escoffre, JM., Teissié, J. & Rols, MP. Gene Transfer: How Can the Biological Barriers Be Overcome?. J Membrane Biol 236, 61–74 (2010). https://doi.org/10.1007/s00232-010-9275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9275-0

Keywords

Navigation