Skip to main content

Nonviral Gene Therapy—The Challenge of Mobilizing DNA

  • Chapter
  • First Online:
Somatic Genome Manipulation
  • 1140 Accesses

Abstract

Genetic treatment of human disease is based on the feasibility of transferring exogenous genes, engineered in the laboratory for optimized and persistent expression, to relevant cells or tissues in the patient. Viruses are natural carriers of genetic information, and have been successfully adapted as gene vehicles (‘vectors’) in several recent clinical trials. Therapeutic administration of gene-encoding plasmid DNA—either ‘naked’ or wrapped in cationic complexes—represents an alternative approach that is traditionally considered safer, less immunogenic, and more cost-effective than virus-derived vectors. However, plasmid DNA is confronted by numerous in vivo barriers, and nonviral gene delivery methods have generally suffered from low gene delivery efficacy and short-term gene expression. Hence, to reach the prominent goal of mobilizing therapeutic DNA and facilitating uptake of DNA in the nuclei of desired cells, additional action is required. Such actions may serve to increase cell permeability, for example by exposing target cells to high pressure or an externally applied electrical field. Other strategies aim at mimicking viral gene transfer by engineering synthetic particles of lipids or polymers complexed with plasmid DNA. This chapter reviews the current status of nonviral gene transfer with primary focus on the DNA and its mobilization. The major barriers to nonviral gene delivery are discussed and the potential of minicircle DNA, devoid of bacterial DNA, and the adaptation of DNA transposable elements for genomic gene insertion are described. A short glimpse into current nonviral gene therapy trials, with particular focus on current attempts to treat cystic fibrosis, is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acsadi G, Jiao SS, Jani A, Duke D, Williams P, Chong W, Wolff JA (1991) Direct gene transfer and expression into rat heart in vivo. New Biol 3:71–81

    CAS  PubMed  Google Scholar 

  • Adelman ZN, Jasinskiene N, James AA (2002) Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol Biochem Parasitol 121:1–10

    CAS  PubMed  Google Scholar 

  • Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    CAS  PubMed  Google Scholar 

  • Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, Scaramuzza S, Andolfi G, Mirolo M, Brigida I, Tabucchi A, Carlucci F, Eibl M, Aker M, Slavin S, Al-Mousa H, Al Ghonaium A, Ferster A, Duppenthaler A, Notarangelo L, Wintergerst U, Buckley RH, Bregni M, Marktel S, Valsecchi MG, Rossi P, Ciceri F, Miniero R, Bordignon C, Roncarolo MG (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458

    CAS  PubMed  Google Scholar 

  • Alton EW, Stern M, Farley R, Jaffe A, Chadwick SL, Phillips J, Davies J, Smith SN, Browning J, Davies MG, Hodson ME, Durham SR, Li D, Jeffery PK, Scallan M, Balfour R, Eastman SJ, Cheng SH, Smith AE, Meeker D, Geddes DM (1999) Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 353:947–954

    CAS  PubMed  Google Scholar 

  • Alton EW, Boyd AC, Cheng SH, Cunningham S, Davies JC, Gill DR, Griesenbach U, Higgins T, Hyde SC, Innes JA, Murray GD, Porteous DJ (2013) A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis. Thorax doi:10.1136/thoraxjnl-2013-203309

    Google Scholar 

  • Ammar I, Gogol-Doring A, Miskey C, Chen W, Cathomen T, Izsvak Z, Ivics Z (2012a) Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res 40:6693–6712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ammar I, Izsvak Z, Ivics Z (2012b) The Sleeping Beauty transposon toolbox. Methods Mol Biol 859:229–240

    CAS  PubMed  Google Scholar 

  • Anderson WF (1984) Prospects for human gene therapy. Science 226:401–409

    CAS  PubMed  Google Scholar 

  • Andre FM, Gehl J, Sersa G, Preat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols MP, Miklavcic D, Neumann E, Teissie J, Mir LM (2008) Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum Gene Ther 19:1261–1271

    CAS  PubMed  Google Scholar 

  • Argyros O, Wong SP, Niceta M, Waddington SN, Howe SJ, Coutelle C, Miller AD, Harbottle RP (2008) Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther 15:1593–1605

    CAS  PubMed  Google Scholar 

  • Argyros O, Wong SP, Fedonidis C, Tolmachov O, Waddington SN, Howe SJ, Niceta M, Coutelle C, Harbottle RP (2011a) Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. J Mol Med (Berl) 89:515–529

    CAS  Google Scholar 

  • Argyros O, Wong SP, Harbottle RP (2011b) Non-viral episomal modification of cells using S/MAR elements. Expert Opin Biol Ther 11:1177–1191

    CAS  PubMed  Google Scholar 

  • Aronovich EL, Bell JB, Belur LR, Gunther R, Koniar B, Erickson DC, Schachern PA, Matise I, McIvor RS, Whitley CB, Hackett PB (2007) Prolonged expression of a lysosomal enzyme in mouse liver after Sleeping Beauty transposon-mediated gene delivery: implications for non-viral gene therapy of mucopolysaccharidoses. J Gene Med 9:403–415

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aronovich EL, Bell JB, Khan SA, Belur LR, Gunther R, Koniar B, Schachern PA, Parker JB, Carlson CS, Whitley CB, McIvor RS, Gupta P, Hackett PB (2009) Systemic correction of storage disease in MPS I NOD/SCID mice using the Sleeping Beauty transposon system. Mol Ther 17:1136–1144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Badding MA, Vaughan EE, Dean DA (2012) Transcription factor plasmid binding modulates microtubule interactions and intracellular trafficking during gene transfer. Gene Ther 19:338–346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Badding MA, Lapek JD, Friedman AE, Dean DA (2013) Proteomic and functional analyses of protein-DNA complexes during gene transfer. Mol Ther 21:775–785

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baiker A, Maercker C, Piechaczek C, Schmidt SB, Bode J, Benham C, Lipps HJ (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2:182–184

    CAS  PubMed  Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    CAS  PubMed  Google Scholar 

  • Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS, Ekker SC (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2:e169

    PubMed Central  PubMed  Google Scholar 

  • Baus J, Liu L, Heggestad AD, Sanz S, Fletcher BS (2005) Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol Ther 12:1148–1156

    CAS  PubMed  Google Scholar 

  • Belur LR, Frandsen JL, Dupuy AJ, Ingbar DH, Largaespada DA, Hackett PB, Scott McIvor R (2003) Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system. Mol Ther 8:501–507

    CAS  PubMed  Google Scholar 

  • Belur LR, Podetz-Pedersen K, Frandsen J, McIvor RS (2007) Lung-directed gene therapy in mice using the nonviral Sleeping Beauty transposon system. Nat Protoc 2:3146–3152

    CAS  PubMed  Google Scholar 

  • Bigger BW, Tolmachov O, Collombet JM, Fragkos M, Palaszewski I, Coutelle C (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    CAS  PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg SA, Klein H, Berger M, Mullen CA, Ramsey WJ, Muul L, Morgan RA, Anderson WF (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270:475–480

    CAS  PubMed  Google Scholar 

  • Bodles-Brakhop AM, Heller R, Draghia-Akli R (2009) Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol Ther 17:585–592

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonamassa B, Hai L, Liu D (2011) Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm Res 28:694–701

    PubMed Central  CAS  PubMed  Google Scholar 

  • Budker V, Zhang G, Danko I, Williams P, Wolff J (1998) The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 5:272–276

    CAS  PubMed  Google Scholar 

  • Buttrick PM, Kass A, Kitsis RN, Kaplan ML, Leinwand LA (1992) Behavior of genes directly injected into the rat heart in vivo. Circ Res 70:193–198

    CAS  PubMed  Google Scholar 

  • Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35:e87

    PubMed Central  PubMed  Google Scholar 

  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    CAS  PubMed  Google Scholar 

  • Chabot S, Orio J, Schmeer M, Schleef M, Golzio M, Teissie J (2013) Minicircle DNA electrotransfer for efficient tissue-targeted gene delivery. Gene Ther 20:62–68

    CAS  PubMed  Google Scholar 

  • Chen ZY, Yant SR, He CY, Meuse L, Shen S, Kay MA (2001) Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther 3:403–410

    CAS  PubMed  Google Scholar 

  • Chen ZY, He CY, Ehrhardt A, Kay MA (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    CAS  PubMed  Google Scholar 

  • Chen ZY, He CY, Meuse L, Kay MA (2004) Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11:856–864

    CAS  PubMed  Google Scholar 

  • Chen ZY, Riu E, He CY, Xu H, Kay MA (2008) Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 16:548–556

    CAS  PubMed  Google Scholar 

  • Claeys Bouuaert C, Chalmers RM (2009) Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 138:473–484

    PubMed  Google Scholar 

  • Clark KJ, Carlson DF, Leaver MJ, Foster LK, Fahrenkrug SC (2009) Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Res 37:1239–1247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark KJ, Voytas DF, Ekker SC (2011) A TALE of two nucleases: gene targeting for the masses? Zebrafish 8:147–149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB (2002) Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J Mol Biol 318:1221–1235

    CAS  PubMed  Google Scholar 

  • Danialou G, Comtois AS, Matecki S, Nalbantoglu J, Karpati G, Gilbert R, Geoffroy P, Gilligan S, Tanguay JF, Petrof BJ (2005) Optimization of regional intraarterial naked DNA-mediated transgene delivery to skeletal muscles in a large animal model. Mol Ther 11:257–266

    CAS  PubMed  Google Scholar 

  • Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349

    CAS  PubMed  Google Scholar 

  • Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239–241

    CAS  PubMed  Google Scholar 

  • Dauty E, Verkman AS (2005) Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem 280:7823–7828

    CAS  PubMed  Google Scholar 

  • Di Matteo M, Belay E, Chuah MK, Vandendriessche T (2012) Recent developments in transposon-mediated gene therapy. Expert Opin Biol Ther 12:841–858

    CAS  PubMed  Google Scholar 

  • Dietz WM, Skinner NE, Hamilton SE, Jund MD, Heitfeld SM, Litterman AJ, Hwu P, Chen ZY, Salazar AM, Ohlfest JR, Blazar BR, Pennell CA, Osborn MJ (2013) Minicircle DNA is superior to plasmid DNA in eliciting antigen-specific CD8 T-cell responses. Mol Ther 21:1526–1535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    CAS  PubMed  Google Scholar 

  • Doherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH (2012) Hyperactive piggyBac gene transfer in human cells and in vivo. Hum Gene Ther 23:311–320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eastman SJ, Lukason MJ, Tousignant JD, Murray H, Lane MD, George JA St, Akita GY, Cherry M, Cheng SH, Scheule RK (1997) A concentrated and stable aerosol formulation of cationic lipid: DNA complexes giving high-level gene expression in mouse lung. Hum Gene Ther 8:765–773

    CAS  PubMed  Google Scholar 

  • Ehrhardt A, Xu H, Huang Z, Engler JA, Kay MA (2005) A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase phiC31 and the Sleeping Beauty transposase. Mol Ther 11:695–706

    CAS  PubMed  Google Scholar 

  • Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17:1077–1094

    CAS  PubMed  Google Scholar 

  • El-Sayed A, Harashima H (2013) Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 21:1118–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  • El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13–22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elick TA, Bauser CA, Fraser MJ (1996) Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98:33–41

    CAS  PubMed  Google Scholar 

  • Escoffre JM, Portet T, Wasungu L, Teissie J, Dean D, Rols MP (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41:286–295

    CAS  PubMed  Google Scholar 

  • Ewert KK, Zidovska A, Ahmad A, Bouxsein NF, Evans HM, McAllister CS, Samuel CE, Safinya CR (2010) Cationic liposome-nucleic acid complexes for gene delivery and silencing: pathways and mechanisms for plasmid DNA and siRNA. Top Curr Chem 296:191–226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    CAS  PubMed  Google Scholar 

  • Fraser MJ, Ciszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151

    CAS  PubMed  Google Scholar 

  • Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175:949–955

    CAS  PubMed  Google Scholar 

  • Galla M, Schambach A, Falk CS, Maetzig T, Kuehle J, Lange K, Zychlinski D, Heinz N, Brugman MH, Gohring G, Izsvak Z, Ivics Z, Baum C (2011) Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res 39:7147–7160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galvan DL, Nakazawa Y, Kaja A, Kettlun C, Cooper LJ, Rooney CM, Wilson MH (2009) Genome-wide mapping of piggyBac transposon integrations in primary human T cells. J Immunother 32:837–844

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G, Tremblay K, de Wal J, Twisk J, van den Bulk N, Sier-Ferreira V, van Deventer S (2012) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL(S447X)) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20:361–369

    PubMed  Google Scholar 

  • Geurts AM, Yang Y, Clark KJ, Liu G, Cui Z, Dupuy AJ, Bell JB, Largaespada DA, Hackett PB (2003) Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol Ther 8:108–117

    CAS  PubMed  Google Scholar 

  • Geurts AM, Hackett CS, Bell JB, Bergemann TL, Collier LS, Carlson CM, Largaespada DA, Hackett PB (2006) Structure-based prediction of insertion-site preferences of transposons into chromosomes. Nucleic Acids Res 34:2803–2811

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gracey Maniar LE, Maniar JM, Chen ZY, Lu J, Fire AZ, Kay MA (2013) Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther 21:131–138

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griesenbach U, Alton EW (2013) Expert opinion in biological therapy: update on developments in lung gene transfer. Expert Opin Biol Ther 13:345–360

    CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, Leiva L, Sorensen R, Debre M, Casanova JL, Blanche S, Durandy A, Bushman FD, Fischer A, Cavazzana-Calvo M (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hackett PB, Ekker SC, Largaespada DA, McIvor RS (2005) Sleeping Beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 54:189–232

    CAS  PubMed  Google Scholar 

  • Hackett PB Jr, Aronovich EL, Hunter D, Urness M, Bell JB, Kass SJ, Cooper LJ, McIvor S (2011) Efficacy and safety of Sleeping Beauty transposon-mediated gene transfer in preclinical animal studies. Curr Gene Ther 11:341–349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hegge JO, Wooddell CI, Zhang G, Hagstrom JE, Braun S, Huss T, Sebestyen MG, Emborg ME, Wolff JA (2010) Evaluation of hydrodynamic limb vein injections in nonhuman primates. Hum Gene Ther 21:829–842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    CAS  PubMed  Google Scholar 

  • Hengge UR, Walker PS, Vogel JC (1996) Expression of naked DNA in human, pig, and mouse skin. J Clin Invest 97:2911–2916

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK (2004) Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther 10:269–278

    CAS  PubMed  Google Scholar 

  • Hojman P (2010) Basic principles and clinical advancements of muscle electrotransfer. Curr Gene Ther 10:128–138

    CAS  PubMed  Google Scholar 

  • Hojman P, Gissel H, Gehl J (2007) Sensitive and precise regulation of haemoglobin after gene transfer of erythropoietin to muscle tissue using electroporation. Gene Ther 14:950–959

    CAS  PubMed  Google Scholar 

  • Hojman P, Gissel H, Andre FM, Cournil-Henrionnet C, Eriksen J, Gehl J, Mir LM (2008) Physiological effects of high- and low-voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther 19:1249–1260

    CAS  PubMed  Google Scholar 

  • Hollis RP, Nightingale SJ, Wang X, Pepper KA, Yu XJ, Barsky L, Crooks GM, Kohn DB (2006) Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. Exp Hematol 34:1333–1343

    CAS  PubMed  Google Scholar 

  • Houk BE, Martin R, Hochhaus G, Hughes JA (2001) Pharmacokinetics of plasmid DNA in the rat. Pharm Res 18:67–74

    CAS  PubMed  Google Scholar 

  • Huang X, Guo H, Kang J, Choi S, Zhou TC, Tammana S, Lees CJ, Li ZZ, Milone M, Levine BL, Tolar J, June CH, Scott McIvorR, Wagner JE, Blazar BR, Zhou X (2008) Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther 16:580–589

    CAS  PubMed  Google Scholar 

  • Huang M, Chen Z, Hu S, Jia F, Li Z, Hoyt G, Robbins RC, Kay MA, Wu JC (2009a) Novel minicircle vector for gene therapy in murine myocardial infarction. Circulation 120:S230–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, Wilber A, McIvor RS, Zhou X (2009b) DNA transposons for modification of human primary T lymphocytes. Methods Mol Biol 506:115–126

    CAS  PubMed  Google Scholar 

  • Huang X, Guo H, Tammana S, Jung YC, Mellgren E, Bassi P, Cao Q, Tu ZJ, Kim YC, Ekker SC, Wu X, Wang SM, Zhou X (2010) Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther 18:1803–1813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang M, Nguyen P, Jia F, Hu S, Gong Y, de Almeida PE, Wang L, Nag D, Kay MA, Giaccia AJ, Robbins RC, Wu JC (2011) Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation 124:S46–54

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, Nunez-Alonso G, Green AM, Bazzani RP, Sumner-Jones SG, Chan M, Li H, Yew NS, Cheng SH, Boyd AC, Davies JC, Griesenbach U, Porteous DJ, Sheppard DN, Munkonge FM, Alton EW, Gill DR (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26:549–551

    CAS  PubMed  Google Scholar 

  • Ivics Z, Izsvak Z (2006) Transposons for gene therapy! Curr Gene Ther 6:593–607

    CAS  PubMed  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    CAS  PubMed  Google Scholar 

  • Izsvak Z, Ivics Z (2004) Sleeping Beauty transposition: biology and applications for molecular therapy. Mol Ther 9:147–156

    CAS  PubMed  Google Scholar 

  • Izsvak Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z (2002) Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. J Biol Chem 277:34581–34588

    CAS  PubMed  Google Scholar 

  • Izsvak Z, Hackett PB, Cooper LJ, Ivics Z (2010) Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays 32:756–767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin Z, Maiti S, Huls H, Singh H, Olivares S, Mates L, Izsvak Z, Ivics Z, Lee DA, Champlin RE, Cooper LJ (2011) The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther 18:849–856

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kadlecova Z, Baldi L, Hacker D, Wurm FM, Klok HA (2012) Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues. Biomacromolecules 13:3127–3137

    CAS  PubMed  Google Scholar 

  • Kadlecova Z, Rajendra Y, Matasci M, Baldi L, Hacker DL, Wurm FM, Klok HA (2013) DNA delivery with hyperbranched polylysine: a comparative study with linear and dendritic polylysine. J Control Release 169:276–288

    CAS  PubMed  Google Scholar 

  • Kamimura K, Suda T, Xu W, Zhang G, Liu D (2009) Image-guided, lobe-specific hydrodynamic gene delivery to swine liver. Mol Ther 17:491–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kamimura K, Zhang G, Liu D (2010) Image-guided, intravascular hydrodynamic gene delivery to skeletal muscle in pigs. Mol Ther 18:93–100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang HC, Huh KM, Bae YH (2012) Polymeric nucleic acid carriers: current issues and novel design approaches. J Control Release 164:256–264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawabata K, Takakura Y, Hashida M (1995) The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res 12:825–830

    CAS  PubMed  Google Scholar 

  • Kawakami K, Koga A, Hori H, Shima A (1998) Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225:17–22

    CAS  PubMed  Google Scholar 

  • Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97:11403–11408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kay MA, He CY, Chen ZY (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kebriaei P, Huls H, Jena B, Munsell M, Jackson R, Lee DA, Hackett PB, Rondon G, Shpall E, Champlin RE, Cooper LJ (2012) Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 23:444–450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keravala A, Liu D, Lechman ER, Wolfe D, Nash JA, Lampe DJ, Robbins PD (2006) Hyperactive Himar1 transposase mediates transposition in cell culture and enhances gene expression in vivo. Hum Gene Ther 17:1006–1018

    CAS  PubMed  Google Scholar 

  • Kettlun C, Galvan DL, George AL Jr, Kaja A, Wilson MH (2011) Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther 19:1636–1644

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klasse PJ (2012) The molecular basis of HIV entry. Cell Microbiol 14:1183–1192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kobelt D, Schleef M, Schmeer M, Aumann J, Schlag PM, Walther W (2013) Performance of high quality minicircle DNA for in vitro and in vivo gene transfer. Mol Biotechnol 53:80–89

    CAS  PubMed  Google Scholar 

  • Kobiler O, Drayman N, Butin-Israeli V, Oppenheim A (2012) Virus strategies for passing the nuclear envelope barrier. Nucleus 3:526–539

    PubMed Central  PubMed  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    CAS  PubMed  Google Scholar 

  • Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634

    CAS  PubMed  Google Scholar 

  • Kwon MJ, An S, Choi S, Nam K, Jung HS, Yoon CS, Ko JH, Jun HJ, Kim TK, Jung SJ, Park JH, Lee Y, Park JS (2012) Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med 14:272–278

    CAS  PubMed  Google Scholar 

  • Lacoste A, Berenshteyn F, Brivanlou AH (2009) An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5:332–342

    CAS  PubMed  Google Scholar 

  • Lam AP, Dean DA (2010) Progress and prospects: nuclear import of nonviral vectors. Gene Ther 17:439–447

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32:403–430

    CAS  PubMed  Google Scholar 

  • Lee ER, Marshall J, Siegel CS, Jiang C, Yew NS, Nichols MR, Nietupski JB, Ziegler RJ, Lane MB, Wang KX, Wan NC, Scheule RK, Harris DJ, Smith AE, Cheng SH (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 7:1701–1717

    CAS  PubMed  Google Scholar 

  • Li X, Ewis H, Hice RH, Malani N, Parker N, Zhou L, Feschotte C, Bushman FD, Atkinson PW, Craig NL (2013) A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc Natl Acad Sci U S A 110:E478–E487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liang Q, Kong J, Stalker J, Bradley A (2009) Chromosomal mobilization and reintegration of Sleeping Beauty and piggyBac transposons. Genesis 47:404–408

    CAS  PubMed  Google Scholar 

  • Lin EH, Keramidas M, Rome C, Chiu WT, Wu CW, Coll JL, Deng WP (2011) Lifelong reporter gene imaging in the lungs of mice following polyethyleneimine-mediated sleeping-beauty transposon delivery. Biomaterials 32:1978–1985

    CAS  PubMed  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    CAS  PubMed  Google Scholar 

  • Liu L, Sanz S, Heggestad AD, Antharam V, Notterpek L, Fletcher BS (2004) Endothelial targeting of the Sleeping Beauty transposon within lung. Mol Ther 10:97–105

    CAS  PubMed  Google Scholar 

  • Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA, Takeda J, Horie K, Olson WK, Hackett PB (2005) Target-site preferences of Sleeping Beauty transposons. J Mol Biol 346:161–173

    CAS  PubMed  Google Scholar 

  • Liu H, Liu L, Fletcher BS, Visner GA (2006a) Sleeping Beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis. Faseb J 20:2384–2386

    CAS  PubMed  Google Scholar 

  • Liu J, Jeppesen I, Nielsen K, Jensen TG (2006b) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13:1188–1190

    CAS  PubMed  Google Scholar 

  • Liu L, Mah C, Fletcher BS (2006c) Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted Sleeping Beauty transposon. Mol Ther 13:1006–1015

    CAS  PubMed  Google Scholar 

  • Liu J, Skjorringe T, Gjetting T, Jensen TG (2009) PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts. BMC Biotechnol 9:31

    PubMed Central  PubMed  Google Scholar 

  • Lu J, Zhang F, Xu S, Fire AZ, Kay MA (2012) The extragenic spacer length between the 5′ and 3′ ends of the transgene expression cassette affects transgene silencing from plasmid-based vectors. Mol Ther 20:2111–2119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    CAS  PubMed  Google Scholar 

  • Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A, Marshall KA, Banfi S, Chung DC, Morgan JI, Hauck B, Zelenaia O, Zhu X, Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, McDonnell JW, Leroy BP, Simonelli F, Bennett J (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605

    CAS  PubMed  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108:2623–2628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matarrese P, Malorni W (2005) Human immunodeficiency virus (HIV)-1 proteins and cytoskeleton: partners in viral life and host cell death. Cell Death Differ 12(Suppl 1):932–941

    CAS  PubMed  Google Scholar 

  • Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, Vandendriessche T, Ivics Z, Izsvak Z (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761

    CAS  PubMed  Google Scholar 

  • Mayrhofer P, Blaesen M, Schleef M, Jechlinger W (2008) Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med 10:1253–1269

    CAS  PubMed  Google Scholar 

  • Mayrhofer P, Schleef M, Jechlinger W (2009) Use of minicircle plasmids for gene therapy. Methods Mol Biol 542:87–104

    CAS  PubMed  Google Scholar 

  • McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, Hope TJ (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159:441–452

    PubMed Central  CAS  PubMed  Google Scholar 

  • McLachlan G, Davidson H, Holder E, Davies LA, Pringle IA, Sumner-Jones SG, Baker A, Tennant P, Gordon C, Vrettou C, Blundell R, Hyndman L, Stevenson B, Wilson A, Doherty A, Shaw DJ, Coles RL, Painter H, Cheng SH, Scheule RK, Davies JC, Innes JA, Hyde SC, Griesenbach U, Alton EW, Boyd AC, Porteous DJ, Gill DR, Collie DD (2011) Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther 18:996–1005

    CAS  PubMed  Google Scholar 

  • McMahon MA, Rahdar M, Porteus M (2012) Gene editing: not just for translation anymore. Nat Methods 9:28–31

    CAS  Google Scholar 

  • Meir YJ, Weirauch MT, Yang HS, Chung PC, Yu RK, Wu SC (2011) Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol 11:28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mesika A, Kiss V, Brumfeld V, Ghosh G, Reich Z (2005) Enhanced intracellular mobility and nuclear accumulation of DNA plasmids associated with a karyophilic protein. Hum Gene Ther 16:200–208

    CAS  PubMed  Google Scholar 

  • Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR, Kay MA (2000) Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 1:522–532

    CAS  PubMed  Google Scholar 

  • Mikkelsen JG, Yant SR, Meuse L, Huang Z, Xu H, Kay MA (2003) Helper-Independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 8:654–665

    CAS  PubMed  Google Scholar 

  • Miskey C, Izsvak Z, Plasterk RH, Ivics Z (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31:6873–6881

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    PubMed Central  PubMed  Google Scholar 

  • Mitra R, Li X, Kapusta A, Mayhew D, Mitra RD, Feschotte C, Craig NL (2013) Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon. Proc Natl Acad Sci U S A 110:234–239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moldt B, Yant SR, Andersen PR, Kay MA, Mikkelsen JG (2007) Cis-acting gene regulatory activities in the terminal regions of Sleeping Beauty DNA transposon-based vectors. Hum Gene Ther 18:1193–1204

    CAS  PubMed  Google Scholar 

  • Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, Huang L, Shu S, Gordon D, Chang AE (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 90:11307–11311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Narsinh KH, Jia F, Robbins RC, Kay MA, Longaker MT, Wu JC (2011) Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc 6:78–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C, O’Beirne J, Smith K, Pasi J, Glader B, Rustagi P, Ng CY, Kay MA, Zhou J, Spence Y, Morton CL, Allay J, Coleman J, Sleep S, Cunningham JM, Srivastava D, Basner-Tschakarjan E, Mingozzi F, High KA, Gray JT, Reiss UM, Nienhuis AW, Davidoff AM (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–2365

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45:1153–1162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh YK, Kim JP, Yoon H, Kim JM, Yang JS, Kim CK (2001) Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther 8:1587–1592

    CAS  PubMed  Google Scholar 

  • Ohlfest JR, Lobitz PD, Perkinson SG, Largaespada DA (2004) Integration and long-term expression in xenografted human glioblastoma cells using a plasmid-based transposon system. Mol Ther 10:260–268

    CAS  PubMed  Google Scholar 

  • Ohlfest JR, Demorest ZL, Motooka Y, Vengco I, Oh S, Chen E, Scappaticci FA, Saplis RJ, Ekker SC, Low WC, Freese AB, Largaespada DA (2005a) Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the Sleeping Beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther 12:778–788

    CAS  PubMed  Google Scholar 

  • Ohlfest JR, Frandsen JL, Fritz S, Lobitz PD, Perkinson SG, Clark KJ, Nelsestuen G, Key NS, McIvor RS, Hackett PB, Largaespada DA (2005b) Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 105:2691–2698

    CAS  PubMed  Google Scholar 

  • Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 20:1124–1128

    CAS  PubMed  Google Scholar 

  • Orban TI, Apati A, Nemeth A, Varga N, Krizsik V, Schamberger A, Szebenyi K, Erdei Z, Varady G, Karaszi E, Homolya L, Nemet K, Gocza E, Miskey C, Mates L, Ivics Z, Izsvak Z, Sarkadi B (2009) Applying a “double-feature” promoter to identify cardiomyocytes differentiated from human embryonic stem cells following transposon-based gene delivery. Stem Cells 27:1077–1087

    CAS  PubMed  Google Scholar 

  • Ortiz-Urda S, Lin Q, Yant SR, Keene D, Kay MA, Khavari PA (2003) Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther 10:1099–1104

    CAS  PubMed  Google Scholar 

  • Osborn MJ, McElmurry RT, Peacock B, Tolar J, Blazar BR (2008) Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther 16:1459–1466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Osborn MJ, McElmurry RT, Lees CJ, DeFeo AP, Chen ZY, Kay MA, Naldini L, Freeman G, Tolar J, Blazar BR (2011) Minicircle DNA-based gene therapy coupled with immune modulation permits long-term expression of alpha-L-iduronidase in mice with mucopolysaccharidosis type I. Mol Ther 19:450–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27:426–428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    CAS  PubMed  Google Scholar 

  • Raices M, D'Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 13:687–699

    CAS  PubMed  Google Scholar 

  • Riu E, Chen ZY, Xu H, He CY, Kay MA (2007) Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther 15:1348–1355

    CAS  PubMed  Google Scholar 

  • Ruiz FE, Clancy JP, Perricone MA, Bebok Z, Hong JS, Cheng SH, Meeker DP, Young KR, Schoumacher RA, Weatherly MR, Wing L, Morris JE, Sindel L, Rosenberg M, van Ginkel FW, McGhee JR, Kelly D, Lyrene RK, Sorscher EJ (2001) A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther 12:751–761

    CAS  PubMed  Google Scholar 

  • Sellins K, Fradkin L, Liggitt D, Dow S (2005) Type I interferons potently suppress gene expression following gene delivery using liposome(-)DNA complexes. Mol Ther 12:451–459

    CAS  PubMed  Google Scholar 

  • Sharma N, Hollensen AK, Bak RO, Staunstrup NH, Schroder LD, Mikkelsen JG (2012) The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells. PLoS ONE 7:e48421

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma N, Cai Y, Bak RO, Jakobsen MR, Schroder LD, Mikkelsen JG (2013) Efficient Sleeping Beauty DNA transposition from DNA minicircles. Mol Ther Nucleic Acids 2:e74

    PubMed Central  PubMed  Google Scholar 

  • Sikes ML, O’Malley BW Jr, Finegold MJ, Ledley FD (1994) In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum Gene Ther 5:837–844

    CAS  PubMed  Google Scholar 

  • Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, Hackett PB, Kohn DB, Shpall EJ, Champlin RE, Cooper LJ (2008) Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 68:2961–2971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spanggaard I, Corydon T, Hojman P, Gissel H, Dagnaes-Hansen F, Jensen TG, Gehl J (2012) Spatial distribution of transgenic protein after gene electrotransfer to porcine muscle. Hum Gene Ther Methods 23:387–392

    CAS  PubMed  Google Scholar 

  • Staunstrup NH, Moldt B, Mates L, Villesen P, Jakobsen M, Ivics Z, Izsvak Z, Mikkelsen JG (2009) Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol Ther 17:1205–1214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stenler S, Andersson A, Simonson OE, Lundin KE, Chen ZY, Kay MA, Smith CI, Sylven C, Blomberg P (2009) Gene transfer to mouse heart and skeletal muscles using a minicircle expressing human vascular endothelial growth factor. J Cardiovasc Pharmacol 53:18–23

    CAS  PubMed  Google Scholar 

  • Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15:2063–2069

    CAS  PubMed  Google Scholar 

  • Suda T, Suda K, Liu D (2008) Computer-assisted hydrodynamic gene delivery. Mol Ther 16:1098–1104

    CAS  PubMed  Google Scholar 

  • Sumiyoshi T, Holt NG, Hollis RP, Ge S, Cannon PM, Crooks GM, Kohn DB (2009) Stable transgene expression in primitive human CD34 +  hematopoietic stem/progenitor cells, using the Sleeping Beauty transposon system. Hum Gene Ther 20:1607–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sutcliffe JG (1978) Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci U S A 75:3737–3741

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swierczek M, Izsvak Z, Ivics Z (2012) The Sleeping Beauty transposon system for clinical applications. Expert Opin Biol Ther 12:139–153

    CAS  PubMed  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21:3926–3934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, Huls H, Miller JC, Kebriaei P, Rabinovitch B, Lee DA, Champlin RE, Bonini C, Naldini L, Rebar EJ, Gregory PD, Holmes MC, Cooper LJ (2012) A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119:5697–5705

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    CAS  PubMed  Google Scholar 

  • VandenDriessche T, Ivics Z, Izsvak Z, Chuah MK (2009) Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114:1461–1468

    CAS  PubMed  Google Scholar 

  • Vandermeulen G, Marie C, Scherman D, Preat V (2011) New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol Ther 19:1942–1949

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaughan EE, Dean DA (2006) Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther 13:422–428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaughan EE, DeGiulio JV, Dean DA (2006) Intracellular trafficking of plasmids for gene therapy: mechanisms of cytoplasmic movement and nuclear import. Curr Gene Ther 6:671–681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vigdal TJ, Kaufman CD, Izsvak Z, Voytas DF, Ivics Z (2002) Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441–452

    CAS  PubMed  Google Scholar 

  • Voigt K, Gogol-Doring A, Miskey C, Chen W, Cathomen T, Izsvak Z, Ivics Z (2012) Retargeting Sleeping Beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 20:1852–1862

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walisko O, Izsvak Z, Szabo K, Kaufman CD, Herold S, Ivics Z (2006) Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1. Proc Natl Acad Sci U S A 103:4062–4067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilber A, Linehan JL, Tian X, Woll PS, Morris JK, Belur LR, McIvor RS, Kaufman DS (2007) Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells 25:2919–2927

    CAS  PubMed  Google Scholar 

  • Williams DA (2008) Sleeping Beauty vector system moves toward human trials in the United States. Mol Ther 16:1515–1516

    CAS  PubMed  Google Scholar 

  • Wilson MH, Coates CJ, George AL Jr (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145

    CAS  PubMed  Google Scholar 

  • Wolff JA (1997) Naked DNA transport and expression in mammalian cells. Neuromuscul Disord 7:314–318

    CAS  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    CAS  PubMed  Google Scholar 

  • Woodard LE, Li X, Malani N, Kaja A, Hice RH, Atkinson PW, Bushman FD, Craig NL, Wilson MH (2012) Comparative analysis of the recently discovered hAT transposon TcBuster in human cells. PLoS ONE 7:e42666

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wooddell CI, Hegge JO, Zhang G, Sebestyen MG, Noble M, Griffin JB, Pfannes LV, Herweijer H, Hagstrom JE, Braun S, Huss T, Wolff JA (2011) Dose response in rodents and nonhuman primates after hydrodynamic limb vein delivery of naked plasmid DNA. Hum Gene Ther 22:889–903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y, Hui SW, Frederik P, Szoka FC Jr (1999) Physicochemical characterization and purification of cationic lipoplexes. Biophys J 77:341–353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xue X, Huang X, Nodland SE, Mates L, Ma L, Izsvak Z, Ivics Z, LeBien TW, McIvor RS, Wagner JE, Zhou X (2009) Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Blood 114:1319–1330

    CAS  PubMed  Google Scholar 

  • Yant SR, Kay MA (2003) Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol Cell Biol 23:8505–8518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25:35–41

    CAS  PubMed  Google Scholar 

  • Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA (2004) Mutational analysis of the N-terminal DNA-binding domain of Sleeping Beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 24:9239–9247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25:2085–2094

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:e50

    PubMed Central  PubMed  Google Scholar 

  • Yew NS, Cheng SH (2004) Reducing the immunostimulatory activity of CpG-containing plasmid DNA vectors for non-viral gene therapy. Expert Opin Drug Deliv 1:115–125

    CAS  PubMed  Google Scholar 

  • Yew NS, Wang KX, Przybylska M, Bagley RG, Stedman M, Marshall J, Scheule RK, Cheng SH (1999) Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid: pDNA complexes. Hum Gene Ther 10:223–234

    CAS  PubMed  Google Scholar 

  • Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD, Scheule RK, Cheng SH (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5:731–738

    CAS  PubMed  Google Scholar 

  • Yokoo T, Kamimura K, Suda T, Kanefuji T, Oda M, Zhang G, Liu D, Aoyagi Y (2013) Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats. Gene Ther 20:816–823

    CAS  PubMed  Google Scholar 

  • Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 108:1531–1536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Khare D, Heinemann U, Ivics Z (2003) The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucleic Acids Res 31:2313–2322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol Ther 9:292–304

    CAS  PubMed  Google Scholar 

  • Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10:1735–1737

    CAS  PubMed  Google Scholar 

  • Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11:675–682

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Epperly MW, Kay MA, Chen ZY, Dixon T, Franicola D, Greenberger BA, Komanduri P, Greenberger JS (2008) Radioprotection in vitro and in vivo by minicircle plasmid carrying the human manganese superoxide dismutase transgene. Hum Gene Ther 19:820–826

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao H, Hemmi H, Akira S, Cheng SH, Scheule RK, Yew NS (2004) Contribution of Toll-like receptor 9 signaling to the acute inflammatory response to nonviral vectors. Mol Ther 9:241–248

    CAS  PubMed  Google Scholar 

  • Zhu L, Mahato RI (2010) Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv 7:1209–1226

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies of nonviral vector technogies in the laboratory of JGM have been carried out through support from the Lundbeck Foundation, the Novo Nordisk Foundation, Aase og Ejnar Danielsens Fond, Agnes og Poul Friis Fond, Kgl. Hofbuntmager Aage Bangs Fond, Grosserer A. V. Lykfeldt og Hustrus Legat, Else og Mogens Wedell-Wedellsborgs Fond, Fonden af 17-12-1981, Kong Christian den Tiendes Fond, Civilingeniør Frode V. Nyegaard og hustrus Fond, Clara Hansens Mindelegat, Kirsten Anthonius Mindelegat, Snedkermester Sophus Jacobsen and Hustru Astrid Jacobsens Fond og Frits, Georg og Marie Cecilie Gluds Legat. JGM is the director of Gene Therapy Initiative Aarhus (GTI-Aarhus) funded by the Lundbeck Foundation and a member of the Aarhus Research Center for Innate Immunology (ARCII) established through funding by the AU-Ideas program at Aarhus University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Giehm Mikkelsen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mikkelsen, J. (2015). Nonviral Gene Therapy—The Challenge of Mobilizing DNA. In: Li, XQ., Donnelly, D., Jensen, T. (eds) Somatic Genome Manipulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2389-2_4

Download citation

Publish with us

Policies and ethics