Skip to main content

Advertisement

Log in

A Variant of the Ca2+-Activated Cl Channel Best3 is Expressed in Mouse Exocrine Glands

  • Letter to the Editor
  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Fluid secretion by exocrine glands requires the activation of an apical Ca2+-dependent Cl channel, the molecular identity of which is unknown. We found that mouse exocrine glands expressed an alternately spliced variant of Best3, a member of the Bestrophin (Vmd2) Ca2+-activated Cl channel gene family, whereas the heart expressed full-length Best3. The spliced transcript lacked exons 2, 3 and 6 (Best3-Δ2,3,6) and is predicted to generate an in-frame protein missing the entire cytoplasmic N terminus, the initial two transmembrane domains and part of the first intracellular loop. In addition to exocrine glands, the Best3-Δ2,3,6 splice variant transcript was detected in lung, testis and kidney. The parotid gland and heart expressed proteins of the predicted size for Best3-Δ2,3,6 and full-length Best3, respectively, that targeted to the plasma membrane in HEK293 cells. HEK293 cells expressing Best3 displayed Ca2+-dependent Cl currents that were sensitive to the Cl channel blocker DIDS. In contrast, no Ca2+-dependent Cl currents were detected in cells expressing Best3-Δ2,3,6. Cotransfection of Best3-Δ2,3,6 with Best3 or Best2 (also expressed in salivary gland acinar cells) had no significant effects on the currents generated by either of these Ca2+-dependent Cl channels. Our results demonstrate that exocrine glands express a unique splice variant of Best3. Nevertheless, Best3-Δ2,3,6 does not produce Ca2+-dependent Cl currents, nor does it regulate the activity of Best2 or the full-length Best3 channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arreola J, Melvin JE, Begenisich T (1995) Inhibition of Ca2+-dependent Cl channels from secretory epithelial cells by low internal pH. J Membr Biol 147:95–104

    PubMed  CAS  Google Scholar 

  • Arreola J, Melvin JE, Begenisich T (1996a) Activation of calcium-dependent chloride channels in rat parotid acinar cells. J Gen Physiol 108:35–47

    Article  PubMed  CAS  Google Scholar 

  • Arreola J, Melvin JE, Begenisich T (1996b) Three distinct chloride channels control anion movements in rat parotid acinar cells. J Physiol 490:351–62

    PubMed  CAS  Google Scholar 

  • Arreola J, Melvin JE, Begenisich T (1998) Differences in regulation of Ca2+-activated Cl channels in colonic and parotid secretory cells. Am J Physiol 274:C161–C166

    PubMed  CAS  Google Scholar 

  • Barro Soria R, Spitzner M, Schreiber R, Kunzelmann K (2006) Bestrophin 1 enables Ca2+ activated Cl conductance in epithelia. J Biol Chem. doi: 10.1074/jbc.M605716200

  • Chien LT, Zhang ZR, Hartzell HC (2006) Single Cl channels activated by Ca2+ in Drosophila S2 cells are mediated by bestrophins. J Gen Physiol 128:247–259

    Article  PubMed  CAS  Google Scholar 

  • Duta V, Szkotak AJ, Nahirney D, Duszyk M (2004) The role of bestrophin in airway epithelial ion transport. FEBS Lett 577:551–554

    Article  PubMed  CAS  Google Scholar 

  • Eggermont J (2004) Calcium-activated chloride channels: (un)known, (un)loved? Proc Am Thorac Soc 1:22–27

    Article  PubMed  CAS  Google Scholar 

  • Evans MG, Marty A (1986) Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol 378:437–460

    PubMed  CAS  Google Scholar 

  • Fuller CM, Benos DJ (2000) Ca2+-activated Cl channels: a newly emerging anion transport family. News Physiol Sci 15:165–171

    PubMed  CAS  Google Scholar 

  • Gonzalez-Begne M, Nakamoto T, Nguyen HV, Stewart AK, Alper SL, Melvin JE (2007) Enhanced formation of a HCO 3 transport metabolon in exocrine cells of Nhe1−/− mice. J Biol Chem 282:35125–35132

    Article  PubMed  CAS  Google Scholar 

  • Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Yamazaki J, Okamura K, Teng Y, Kitamura K, Abe K (2006) Roles of CLCA and CFTR in electrolyte re-absorption from rat saliva. J Dent Res 85:1101–1105

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T (1996) A bicarbonate- and weak acid-permeable chloride conductance controlled by cytosolic Ca2+ and ATP in rat submandibular acinar cells. J Membr Biol 153:147–159

    Article  PubMed  CAS  Google Scholar 

  • Kidd JF, Thorn P (2000) Intracellular Ca2+ and Cl channel activation in secretory cells. Annu Rev Physiol 62:493–513

    Article  PubMed  CAS  Google Scholar 

  • Kotera T, Brown PD (1993) Calcium-dependent chloride current activated by hyposmotic stress in rat lacrimal acinar cells. J Membr Biol 134:67–74

    PubMed  CAS  Google Scholar 

  • Kramer F, Stohr H, Weber BH (2004) Cloning and characterization of the murine Vmd2 RFP-TM gene family. Cytogenet Genome Res 105:107–114

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K, Milenkovic VM, Spitzner M, Soria RB, Schreiber R (2007) Calcium-dependent chloride conductance in epithelia: is there a contribution by Bestrophin? Pfluegers Arch 454:879–889

    Article  CAS  Google Scholar 

  • Loewen ME, Forsyth GW (2005) Structure and function of CLCA proteins. Physiol Rev 85:1061–1092

    Article  PubMed  CAS  Google Scholar 

  • Martin DK (1993) Small conductance chloride channels in acinar cells from the rat mandibular salivary gland are directly controlled by a G-protein. Biochem Biophys Res Commun 192:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Marty A, Tan YP, Trautmann A (1984) Three types of calcium-dependent channel in rat lacrimal glands. J Physiol 357:293–325

    PubMed  CAS  Google Scholar 

  • Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469

    Article  PubMed  CAS  Google Scholar 

  • Milenkovic VM, Rivera A, Horling F, Weber BH (2007) Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane. J Biol Chem 282:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Mircheff AK (1989) Lacrimal fluid and electrolyte secretion: a review. Curr Eye Res 8:607–617

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto T, Srivastava A, Romanenko VG, Ovitt CE, Perez-Cornejo P, Arreola J, Begenisich T, Melvin JE (2007) Functional and molecular characterization of the fluid secretion mechanism in human parotid acinar cells. Am J Physiol 292:R2380–R2390

    CAS  Google Scholar 

  • Perez-Cornejo P, De Santiago JA, Arreola J (2004) Permeant anions control gating of calcium-dependent chloride channels. J Membr Biol 198:125–133

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Wei RW, Mann W, Hartzell HC (2003) Two bestrophins cloned from Xenopus laevis oocytes express Ca2+-activated Cl currents. J Biol Chem 278:49563–49572

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Fischmeister R, Hartzell C (2004) Mouse bestrophin-2 is a bona fide Cl channel: identification of a residue important in anion binding and conduction. J Gen Physiol 123:327–340

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Hartzell C (2004) Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel. J Gen Physiol 124:371–382

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Cui Y, Hartzell C (2006) A short motif in the C-terminus of mouse bestrophin 3 [corrected] inhibits its activation as a Cl channel. FEBS Lett 580:2141–2146

    Article  PubMed  CAS  Google Scholar 

  • Qu ZQ, Yu K, Cui YY, Ying C, Hartzell C (2007) Activation of bestrophin Cl channels is regulated by C-terminal domains. J Biol Chem 282:17460–17467

    Article  PubMed  CAS  Google Scholar 

  • Stanton JB, Goldberg AF, Hoppe G, Marmorstein LY, Marmorstein AD (2006) Hydrodynamic properties of porcine bestrophin-1 in Triton X-100. Biochim Biophys Acta 1758:241–247

    Article  PubMed  CAS  Google Scholar 

  • Stohr H, Marquardt A, Nanda I, Schmid M, Weber BH (2002) Three novel human VMD2-like genes are members of the evolutionary highly conserved RFP-TM family. Eur J Hum Genet 10:281–284

    Article  PubMed  Google Scholar 

  • Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99:4008–4013

    Article  PubMed  CAS  Google Scholar 

  • Sundermeier T, Matthews G, Brink PR, Walcott B (2002) Calcium dependence of exocytosis in lacrimal gland acinar cells. Am J Physiol 282:C360–C365

    CAS  Google Scholar 

  • Suzuki M (2006) The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl channels. Exp Physiol 91:141–147

    Article  PubMed  CAS  Google Scholar 

  • Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J (2003) Structure–function analysis of the bestrophin family of anion channels. J Biol Chem 278:41114–41125

    Article  PubMed  CAS  Google Scholar 

  • Tsunenari T, Nathans J, Yau KW (2006) Ca2+-activated Cl current from human bestrophin-4 in excised membrane patches. J Gen Physiol 127:749–754

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Lee MG, Yan M, Diaz J, Benjamin I, Marino CR, Kopito R, Freedman S, Cotton C, Muallem S, Thomas P (1997) Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. Am J Physiol 273:C442–C455

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Laurie Koek, Mark Wagner and Jennifer Scantlin for technical assistance. We are also grateful to Dr. Ted Begenisich for discussions and critical reading of the manuscript. This work was supported in part by National Institutes of Health grants DE09692 and DE08921 (to J. E. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Melvin.

Additional information

Alaka Srivastava, Victor G. Romanenko, and Mireya Gonzalez-Begne have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A., Romanenko, V.G., Gonzalez-Begne, M. et al. A Variant of the Ca2+-Activated Cl Channel Best3 is Expressed in Mouse Exocrine Glands. J Membrane Biol 222, 43–54 (2008). https://doi.org/10.1007/s00232-008-9098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9098-4

Keywords

Navigation