Skip to main content
Log in

Regulation and Function of Lysine-Substituted Na,K Pumps in Salt Adaptation of Artemia franciscana

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The brine shrimp Artemia thrives at extreme conditions of up to 300 g/l salt in hypersaline lakes, but the molecular aspects of this salt adaptation are not clarified. To examine the influence of salt on the expression of two isoforms of Na,K-ATPase, adult Artemia franciscana were cultured for 39 days with the microalga Dunaliella salina as fodder at increasing salt from 30 to 280 g/l. Quantitative reverse-transcriptase polymerase chain reaction showed that the abundance of mRNA of the lysine-substituted α2(KK)-subunit was very low at 30 g/l salt but rose steeply in the range of 70–200 g/l to a level at 200–280 g/l salt, similar to the abundance of the mRNA of the α1(NN)-subunit, which was insignificantly affected by increasing salt. Site-directed mutagenesis showed that Asn324Lys and Asn776Lys in the α1-subunit of pig kidney Na,K-ATPase reduced the stoichiometry of 204Tl binding from 2 to about 1 Tl+(K+) per α-subunit and Na+-dependent phosphorylation from ATP to 25–30%. In structure models, the ε-amino group of Lys776 is located at cation site 1 in the E1P form and near cation site 2 in the E2 conformation, while the side chain of Lys324 points away from the cation sites. Salt-induced expression of the α2(KK)-subunit Na,K-ATPase in A. franciscana may reduce the Na+/ATP ratio and enable the Na,K pump to extrude Na+ against steeper gradients and, thus, contribute to salt adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. (In this article, residue numbers Asn324 and Asn776 refer to the α1-subunit of pig [P05024]); the homologous numbers in the A. franciscana α1-subunit are Asn312 and Asn764 (P28774), and in the α2-subunit the substituted lysines are Lys308 and Lys758 in P17326.)

References

  • Augenfeld JM (1969) The role of Na,K-activated, ouabain-sensitive ATPase in the response of Artemia salina L. to salinity changes. Life Sci 18:973–978

    Google Scholar 

  • Baxter-Lowe LA, Guo JZ, Bergstrom EE, Hokin LE (1989) Molecular cloning of the Na,K-ATPase alpha-subunit in developing brine shrimp and sequence comparison with higher organisms. FEBS Lett 257:181–187

    Article  PubMed  CAS  Google Scholar 

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    PubMed  CAS  Google Scholar 

  • Buch-Pedersen MJ, Palmgren MG (2003) Mechanism of proton transport by plant plasma membrane proton ATPases. J Plant Res 116:507–515

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky JT, Buch-Pedersen MJ, Larsen S, Palmgren MG (2001) A putative proton binding site of plasma membrane H+-ATPase identified through homology modeling. FEBS Lett 494:6–10

    Article  PubMed  CAS  Google Scholar 

  • Chen EY, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Conte FP (1984) Structure and function of the crustacean larval salt gland. Int Rev Cytol 91:45–104

    CAS  Google Scholar 

  • Escalante R, Garcia-Saez A, Sastre L (1995) In situ hybridization analyses of Na,K-ATPase α-subunit expression during early larval development of Artemia franciscana. J Histochem Cytochem 43:391–399

    PubMed  CAS  Google Scholar 

  • Fersht AR (1999) In: Structure and mechanism in protein science–a guide to enzyme catalysis and protein folding, Chap 3. Freeman, New York, pp 129–131

  • Håkansson KO, Jorgensen PL (2003) Homology modeling of Na,K-ATPase: a putative third sodium binding site suggests a relay mechanism compatible with the electrogenic profile of Na+ translocation. Ann N Y Acad Sci 986:163–167

    Article  PubMed  Google Scholar 

  • Hersey SJ, Sachs G (1995) Gastric acid secretion. Physiol Rev 75:155–189

    PubMed  CAS  Google Scholar 

  • Holliday CW, Roye DB, Roer RD (1990) Salinity-induced changes in branchial Na+/K+-ATPase activity and transepithelial potential difference in the brine shrimp Artemia salina. J Exp Biol 151:279–296

    Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen PL, Andersen JP (1988) Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol 103:95–120

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen PL, Håkansson KO, Karlish SJ (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol 65:817–849

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen PL, Pedersen PA (2000) Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase. Biochim Biophys Acta 1505:57–74

    Google Scholar 

  • Lauger P (1991) Electrogenic ion pumps. In: Lauger P (ed) Na, K-ATPase, Chap 8. Sinauer, Boston, pp 198–207

  • Laughlin LT, Reed GH (1997) The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117. Arch Biochem Biophys 348:262–267

    Article  PubMed  CAS  Google Scholar 

  • Macías MT, Palmero I, Sastre L (1991) Cloning of a cDNA encoding an Artemia franciscana Na/K ATPase alpha-subunit. Gene 105:197–204

    Article  PubMed  Google Scholar 

  • Maeda M, Oshiman K, Tamura S, Futai M (1990) Human gastric H,K-ATPase gene. Similarity to Na,K-ATPase genes in exon/intron organization but difference in control region. J Biol Chem 265:9027–9032

    PubMed  CAS  Google Scholar 

  • Nielsen JM, Pedersen PA, Karlish SJD, Jørgensen PL (1998) Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Biochemistry 37:1961–1966

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Toyoshima C (2002) Homology modeling of the cation binding sites of Na+K+-ATPase. Proc Natl Acad Sci USA 99:15977–15982

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PA, Nielsen JM, Rasmussen JH, Jørgensen PL (1998) Contribution to Tl+, K+ and Na+ binding of Asn776, Ser775, Thr772 and Tyr771 in cytoplasmic part of fifth transmembrane segment in α-subunit of renal Na,K-ATPase. Biochemistry 37:17818–17827

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PA, Rasmussen JH, Jørgensen PL (1996) Expression in high yield of pig α1β1 Na,K-ATPase and inactive mutants D369N and D807N in Saccharomyces cerevisiae. J Biol Chem 271:2514–2522

    Article  PubMed  CAS  Google Scholar 

  • Sáez AG, Escalante R, Sastre L (2000) High DNA sequence variability at the α1 Na/K-ATPase locus of Artemia franciscana (brine shrimp): polymorphism in a gene for salt-resistance in a salt-resistant organism. Mol Biol Evol 17:235–250

    PubMed  Google Scholar 

  • Sáez AG, Perona R, Sastre L (1997) Polymorphism and structure of the gene coding for the α1 subunit of the Artemia franciscana Na/K-ATPase. Biochem J 321:509–518

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:596–617

    PubMed  CAS  Google Scholar 

  • Sorensen TL, Moller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Masayoshi N, Hiromi N, Haruo O (2000) Crystal structure of the calcium pump of sarcoplasmatic reticulum at 2.6Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Leth Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorgensen, P.L., Amat, F. Regulation and Function of Lysine-Substituted Na,K Pumps in Salt Adaptation of Artemia franciscana . J Membrane Biol 221, 39–49 (2008). https://doi.org/10.1007/s00232-007-9083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9083-3

Keywords

Navigation