Skip to main content
Log in

Mechanism of proton transport by plant plasma membrane proton ATPases

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The mechanism of proton translocation by P-type proton ATPases is poorly defined. Asp684 in transmembrane segment M6 of the Arabidopsis thaliana AHA2 plasma membrane P-type proton pump is suggested to act as an essential proton acceptor during proton translocation. Arg655 in transmembrane segment M5 seems to be involved in this proton translocation too, but in contrast to Asp684, is not essential for transport. Asp684 may participate in defining the E 1 proton-binding site, which could possibly exist as a hydronium ion coordination center. A model of proton translocation of AHA2 involving the side chains of amino acids Asp684 and Arg655 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Albers RW (1967) Biochemical aspects of active transport. Annu Rev Biochem 36:727–756

    Article  CAS  Google Scholar 

  • Ambesi A, Pan RL, Slayman CW (1996) Alanine-scanning mutagenesis along membrane segment 4 of the yeast plasma membrane H+-ATPase. J Biol Chem 271:22999–23005

    Article  CAS  PubMed  Google Scholar 

  • Amory A, Foury F, Goffeau A (1980) The purified plasma membrane ATPase of the yeast Schizosaccharomyces pompe forms a phosphorylated intermediate. J Biol Chem 256:9353–9357

    Google Scholar 

  • Amory A, Goffeau A, McIntosh DB, Boyer PD (1982) Exchange of oxygen between phosphate and water catalyzed by the plasma membrane ATPase from yeast Schizosaccharomyces pompe. J Biol Chem 257:12509–12516

    CAS  PubMed  Google Scholar 

  • Arango M, Gevaudant, F, Oufattole M, Boutry M (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216:355–365

    CAS  PubMed  Google Scholar 

  • Auer M, Scarborough GA, Kühlbrandt W (1998) Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392:840–843

    Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Google Scholar 

  • Axelsen KB, Venema K, Jahn T, Baunsgaard L, Palmgren MG (1999) Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: mapping of residues that when altered give rise to an activated enzyme. Biochemistry 38:7227–7234

    Article  CAS  PubMed  Google Scholar 

  • Behr JP, Dumas P, Moras D (1982) The H3O+ cation: molecular structure of an oxonium-macrocyclic polyether complex. J Am Chem Soc 104:4540–4543

    CAS  Google Scholar 

  • Berman MC (2001) Slippage and uncoupling in P-type cation pumps; implications for energy transduction mechanisms and regulation of metabolism. Biochim Biophys Acta 1513:95–121

    CAS  PubMed  Google Scholar 

  • Blanpain JP, Ronjat M, Supply P, Dufour JP, Goffeau A, Dupont Y (1992) The yeast plasma membrane H+-ATPase. an essential change of conformation triggered by H+. J Biol Chem 267:3735–3740

    CAS  PubMed  Google Scholar 

  • Boyer PD (1988) Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem Sci 13:5–7

    Google Scholar 

  • Brandsburg-Zabary S, Fried O, Marantz Y, Nachliel E, Gutman M (2000) Biophysical aspects of intra-protein proton transfer. Biochim Biophys Acta 1458:120–134

    Article  CAS  PubMed  Google Scholar 

  • Briskin DP, Hanson JB (1992) How does the plant plasma membrane H+-ATPase pump protons? J Exp Bot 43:269–289

    Google Scholar 

  • Briskin DP, Leonard RT (1982) Partial characterization of phosphorylated intermediate associatee with the plasma membrane ATPase of corn roots. Proc Natl Acad Sci USA 79:6922–6926

    CAS  Google Scholar 

  • Briskin DP, Reynolds-Niesman I (1991) Determination of H+/ATP stoichiometry for the plasma membrane H+-ATPase from red beet (Beta vulgaris L.) storage tissue. Plant Physiol 95:242–250

    CAS  Google Scholar 

  • Buch-Pedersen MJ, Venema K, Serrano R, Palmgren M (2000) Abolishment of proton pumping and accumulation in the E 1P conformational state of a plant plasma membrane H+-ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6. J Biol Chem 275:39167–39173

    Article  CAS  PubMed  Google Scholar 

  • Buch-Pedersen MJ, Palmgren MG (2003) Conserved Asp684 in transmembrane segment M6 of the plant plasma membrane H+-ATPase is a molecular determinant for proton translocation. J Biol Chem 278:17845–17851

    Google Scholar 

  • Bühl M, Wipff G (2002) Hydronium ion complex of 18-crown-6: where are the protons? A density functional study of static and dynamic properties. J Am Chem Soc 124:4473–4480

    Article  PubMed  Google Scholar 

  • Bukrinsky JT, Buch-Pedersen MJ, Larsen S, Palmgren MG (2001) A putative proton binding site of plasma membrane H+-ATPase identified through homology modeling. FEBS Lett 494:6–10

    Article  CAS  PubMed  Google Scholar 

  • Capaldi RA, Aggeler R (2002) Mechanism of the F1F0-type ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–160

    Article  CAS  PubMed  Google Scholar 

  • Clarke DM, Loo TW, Inesi G, Maclennan DH (1989) Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339:476–478

    Google Scholar 

  • Copeland RA, Chan SI (1989) Proton translocation in proteins. Annu Rev Phys Chem 40:671–698

    CAS  PubMed  Google Scholar 

  • DeCoursey TE, Cherny VV (2000) Common themes and problems of bioenergetics and voltage-gated proton channels. Biochim Biophys Acta 1458:104–119

    Article  CAS  PubMed  Google Scholar 

  • Dimitriev OY, Abildgaard F, Markley JL, Fillingame RH (2002) Structure of the Ala24/Asp61–Asp24/Asn61 substituted subunit c of Escherichia coli ATP synthase: implications for the mechanism of proton transport and rotary movement in the Fo complex. Biochemistry 41:5537–5547

    Article  PubMed  Google Scholar 

  • Dutra MB, Ambesi A, Slayman CW (1998) Structure-function relationships in membrane segment 5 of the yeast Pma1 H+-ATPase. J Biol Chem 273:17411–17417

    Article  CAS  PubMed  Google Scholar 

  • Eraso P, Portillo F (1994) Molecular mechanism of regulation of yeast plasma membrane H+-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J Biol Chem 269:10393–10399

    CAS  PubMed  Google Scholar 

  • Exaerde AK d', Supply P, Dufour JP, Bogaerts P, Thinés D, Goffeau A, Boutry M (1995) Functional complementation of a null mutation of the yeast Saccharomyces cerevisiae plasma membrane H+-ATPase by a plant H+-ATPase gene. J Biol Chem 270:23828–23837

    PubMed  Google Scholar 

  • Fillingame RH, Jiang W, Dmitriev OY (2000) Coupling H+ transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. J Exp Biol 203:9–17

    CAS  PubMed  Google Scholar 

  • Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B, Jensen ON, Aducci P, Palmgren MG (1999) Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J Biol Chem 274:36774–36780

    CAS  PubMed  Google Scholar 

  • Gennis RB (1998) How does cytochrome oxidase pump protons? Proc Natl Acad Sci USA 95:12747–12749

    Google Scholar 

  • Goormaghtigh E, Chadwick C, Scarborough GA (1986) Monomers of the Nurospora plasma membrane H+-ATPase catalyze efficient proton translocation. J Biol Chem 261:7466–7471

    CAS  PubMed  Google Scholar 

  • Gupta SS, DeWitt ND, Allen KE, Slayman CW (1998) Evidence for a salt bridge between transmembrane segments 5 and 6 of the yeast plasma membrane H+-ATPase. J Biol Chem 273:34328–34334

    Article  CAS  PubMed  Google Scholar 

  • Heberle J (2000) Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim Biophys Acta 1458:135–147

    CAS  PubMed  Google Scholar 

  • Jahn T, Dietrich J, Andersen B, Leidvik B, Otter C, Briving C, Kuhlbrandt W, Palmgren MG (2001) Large scale expression, purification and 2D crystallization of recombinant plant plasma membrane H+-ATPase. J Mol Biol 309:465–476

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen PL, Pedersen PA (2001) Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase. Biochim Biophys Acta 1505:57–74

    PubMed  Google Scholar 

  • Kühlbrandt W, Zeelen J, Dietrich J (2002) Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 297:1692–1696

    Article  PubMed  Google Scholar 

  • Kuntzweiler TA, Arguello JM, Lingrel JB (1996) Asp804 and Asp808 in the transmembrane domain of the Na,K-ATPase alpha subunit are cation coordinating residues. J Biol Chem 271:29682–29687

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (1997) Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J Biol Chem 272:31209–31212

    Article  CAS  PubMed  Google Scholar 

  • Madoux O, Batoko H, Oecking C, Gevaert K, Vandekerckhove J (2000) A plant plasma membrane H+-ATPase expressed in yeast is activated by phosphorylation at its penultimate residue and binding of 14-3-3 regulatory proteins in the absence of fusicoccin. J Biol Chem 275:17762–1770

    CAS  PubMed  Google Scholar 

  • Michel H (1998) The mechanism of proton pumping by cytochrome c oxidase. Proc Natl Acad Sci USA 95:12819–12824

    Article  CAS  PubMed  Google Scholar 

  • Miller MJ, Oldenburg M, Fillingame RH (1990) The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H+-translocating function retained. Proc Natl Acad Sci USA 87:4900–4904

    CAS  PubMed  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta 1465:1–16

    CAS  PubMed  Google Scholar 

  • Morsomme P, d'Exaerde DK, De Meester S, Thinés D, Goffeau A, Boutry M (1996) Single point mutations in various domains of a plant plasma membrane H+-ATPase expressed in Saccharomyces cerevisiae increase H+-pumping and permit yeast growth at low pH. EMBO J 15:5513–5526

    CAS  PubMed  Google Scholar 

  • Morsomme P, Dambly S, Maudoux O, Boutry M (1998) Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J Biol Chem 273:34837–34842

    CAS  PubMed  Google Scholar 

  • Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Haga T, Toyoshima C (2000) Soluble P-type ATPase from an archaeon, Methanococcus jannaschii. FEBS Lett 471:99–102

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Christensen G (1993) Complementation in situ of the yeast plasma membrane H+-ATPase gene pma1 by an H+-ATPase gene from a heterologous species. FEBS Lett 317:216–222

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Larsson C, Sommarin M (1990) Proteolytic activation of the plant plasma membrane H+-ATPase by removal of a terminal segment. J Biol Chem 265:13423–13426

    CAS  PubMed  Google Scholar 

  • Palmgren MG, Sommarin M, Serrano R, Larsson C (1991) Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase. J Biol Chem 267:20470–20475

    Google Scholar 

  • Pardo JM, Serrano R (1989) Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana. J Biol Chem 264:8557–8562

    CAS  PubMed  Google Scholar 

  • Pedersen PA, Rasmussen JH, Nielsen JM, Jørgensen PL (1997) Identification of Asp804 and Asp808 as Na+ and K+ coordinating residues in alpha-subunit of renal Na,K-ATPase. FEBS Lett 400:206–210

    Article  CAS  PubMed  Google Scholar 

  • Perlin DS, San Francisco MJD, Slayman CW, Rosen BP (1986) H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch Biochem Biophys 248:53–61

    CAS  PubMed  Google Scholar 

  • Petrov VV, Padmanabha KB, Nakamoto RK, Allen KE, Slayman CW (2000) Functional role of charged residues in the transmembrane segments of the yeast plasma membrane H+-ATPase. J Biol Chem 275:15709–15716

    Article  CAS  PubMed  Google Scholar 

  • Pomes R, Roux B (1998) Free energy profiles for H+ conduction along hydrogen-bonded chains of water. Biophys J 75:33–40

    Article  CAS  PubMed  Google Scholar 

  • Portillo F (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta 1469:31–42

    Article  CAS  PubMed  Google Scholar 

  • Post RL, Hegyvary C, Kume S (1972) Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem 247:6530–6540

    CAS  PubMed  Google Scholar 

  • Radresa O, Ogata K, Wodak S, Ruysschaert JM, Goormaghtigh E (2002) Modeling the three-dimensional structure of H+-ATPase of Neurospora crassa. Proposal for a proton pathway from the analysis of internal cavities. Eur J Biochem 269:5246–5258

    Article  CAS  PubMed  Google Scholar 

  • Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    Article  CAS  PubMed  Google Scholar 

  • Serrano R (1993) Structure, function and regulation of plasma membrane H+-ATPase. FEBS Lett 325:108–111

    Article  CAS  PubMed  Google Scholar 

  • Serrano R, Kiellandbrandt MC, Fink GR (1986) Yeast plasma-membrane ATPase is essential for growth and has homology with (Na+/K+), K+- and Ca2+-ATPases. Nature 319:689–693

    CAS  PubMed  Google Scholar 

  • Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C, Oecking C, Sommarin M (1999) Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein. Plant Cell 12:2379–2391

    Article  Google Scholar 

  • Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  • Venema K, Palmgren MG (1995) Metabolic modulation of transport coupling ratio in yeast plasma membrane H+-ATPase. J Biol Chem 270:19659–19667

    CAS  PubMed  Google Scholar 

  • Wurtele M, Jelich-Ottman C, Wittinghofer A, Oecking C (2003) Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J 22:987–994

    Article  PubMed  Google Scholar 

  • Xu C, Rice WJ, He W, Stokes DL (2002) A structural model for the catalytic cycle of Ca2+-ATPase. J Mol Biol 316:201–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Buch-Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buch-Pedersen, M.J., Palmgren, M.G. Mechanism of proton transport by plant plasma membrane proton ATPases. J Plant Res 116, 507–515 (2003). https://doi.org/10.1007/s10265-003-0111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-003-0111-9

Keywords

Navigation