Skip to main content
Log in

The CLIC1 Chloride Channel Is Regulated by the Cystic Fibrosis Transmembrane Conductance Regulator when Expressed in Xenopus Oocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

CLIC proteins comprise a family of chloride channels whose physiological roles are uncertain. To gain further insight into possible means of CLIC1 channel activity regulation, this protein was expressed in Xenopus oocytes alone or in combination with the cystic fibrosis transmembrane conductance regulator (CFTR). Whole-cell currents were determined using two-electrode voltage-clamp methods. Expression of CLIC1 alone did not increase whole-cell conductance either at rest or in response to increased intracellular cyclic adenosine monophosphate (cAMP). However, expression of CLIC1 with CFTR led to increased cAMP-activated whole-cell currents compared to expression from the same amount of CFTR mRNA alone. IAA-94 is a drug known to inhibit CLIC family channels but not CFTR. In oocytes expressing both CLIC1 and CFTR, a fraction of the cAMP-activated whole-cell current was sensitive to IAA-94, whereas in oocytes expressing CFTR alone, the cAMP-stimulated current was resistant to the drug. Cell fractionation studies revealed that the presence of CFTR conferred cAMP-stimulated redistribution of a fraction of CLIC1 from a soluble to a membrane-associated form. We conclude that when expressed in Xenopus oocytes CFTR confers cAMP regulation to CLIC1 activity in the plasma membrane and that at least part of this regulation is due to recruitment of CLIC1 from the cytoplasm to the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Ashley R.H. 2003. Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins. Mol. Membr. Biol. 20:1–11

    Article  PubMed  CAS  Google Scholar 

  • Berryman M., Bretscher A. 2000. Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol. Biol. Cell 11:1509–1521

    PubMed  CAS  Google Scholar 

  • Berryman M., Bruno J., Price J., Edwards J.C. 2004. CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J. Biol. Chem. 279:34794–34801

    Article  PubMed  CAS  Google Scholar 

  • Berryman M., Goldenring J.R. 2003. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil. Cytoskeleton 56:159–172

    Article  PubMed  CAS  Google Scholar 

  • Cromer B.A., Morton C.J., Board P.G., Parker M.W. 2002. From glutathione transferase to a pore in a CLIC. Eur. Biophys. J. 31:356–364

    Article  PubMed  CAS  Google Scholar 

  • Edwards J.C., Cohen C., Xu C.W., Schlesinger P.H. 2006. C-src control of chloride channel support for osteoclast HCl transport and bone resorption. J. Biol. Chem. 281:28011–28022

    Article  PubMed  CAS  Google Scholar 

  • Edwards J.C., Kapadia S. 2000. Regulation of the bovine kidney microsomal chloride channel p64 by p59fyn, a src family tyrosine kinase. J. Biol. Chem. 275:31826–31832

    Article  PubMed  CAS  Google Scholar 

  • Edwards J.C., Tulk B., Schlesinger P.H. 1998. Functional expression of p64, an intracellular chloride channel protein. J. Membr. Biol. 163:119–127

    Article  PubMed  CAS  Google Scholar 

  • Goldin A.L. 1992. Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol. 207:266–279

    Article  PubMed  CAS  Google Scholar 

  • Harrop S.J., DeMaere M.Z., Fairlie W.D., Reztsova T., Valenzuela S.M., Mazzanti M., Tonini R., Qiu M.R., Jankova L., Warton K., Bauskin A.R., Wu W.M., Pankjurst S., Campbell T.J., Breit S.N., Curmi P.M. 2001. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. J. Biol. Chem. 276:44993–44500

    Article  PubMed  CAS  Google Scholar 

  • Husted R.F., Volk K.A., Sigmund R.D., Stokes J.B. 1995. Anion secretion by the inner medullary collecting duct. Evidence for involvement of the cystic fibrosis transmembrane conductance regulator. J. Clin. Invest. 95:644–650

    PubMed  CAS  Google Scholar 

  • Jentsch T.J., Maritzen T., Zdebik A.A. 2005. Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J. Clin. Invest. 115:2039–2046

    Article  PubMed  CAS  Google Scholar 

  • Krieg P.A., Melton D.A. 1984. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12:7057–7070

    Article  PubMed  CAS  Google Scholar 

  • Kunzelman K., Schrieber R. 1999. CFTR, a regulator of channels. J. Membr. Biol. 168:1–8

    Article  Google Scholar 

  • Littler D.R., Harrop S.J, Fairlie W.D., Brown L.J., Pankhurst G.J., Pankhurst S., DeMaere M.Z., Campbell T.J., Bauskin A.R., Tonini R., Mazzanti M., Breit S.N., Curmi P.M. 2004. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J. Biol. Chem. 279:9298–9305

    Article  PubMed  CAS  Google Scholar 

  • Nilius B., Droogman G. 2003. Amazing chloride channels: An overview. Acta Phyisol. Scand. 177:119–147

    Article  CAS  Google Scholar 

  • Ogura T., Furukawa T., Toyozaki T., Yamada K., Zheng Y.J., Katayama Y., Nakaya H., Inagaki N. 2002. ClC-3B, a novel ClC-3 splicing variant that interacts with EBP50 and facilitates expression of CFTR-regulated ORCC. FASEB J. 16:863–865

    PubMed  CAS  Google Scholar 

  • Shanks R.A., Larocca M.C., Berryman M., Edwards J.C., Urushidani T., Navarre J., Goldenring J.R. 2002. AKAP350 at the Golgi apparatus. II. Association of AKAP350 with a novel chloride intracellular channel (CLIC) family member. J. Biol. Chem. 277:40973–40980

    Article  PubMed  CAS  Google Scholar 

  • Singh H., Ashley R.H. 2006. Redox regulation of CLIC1 by cysteine residues associated with the putative channel pore. Biophys. J. 90:1628–1638

    Article  PubMed  CAS  Google Scholar 

  • Soreq H., Seidman S. 1992. Xenopus oocyte microinjection: From gene to protein. Methods Enzymol. 207:225–265

    PubMed  CAS  Google Scholar 

  • Stuhmer W. 1992. Electrophysiological recording from Xenopus ooctyes. Methods Enzymol. 207:319–339

    PubMed  CAS  Google Scholar 

  • Stuhmer W. 1998. Electrophysiologic recordings from Xenopus ooctyes. Methods Enzymol. 293:280–300

    PubMed  CAS  Google Scholar 

  • Tulk B.M., Edwards J.C. 1998. NCC27, a homolog of intracellular Cl channel p64, is expressed in brush border of renal proximal tubule. Am. J. Physiol. 274:F1140-F1149

    PubMed  CAS  Google Scholar 

  • Tulk B.M., Kapadia S., Edwards J.C. 2002. CLIC1 inserts from the aqueous phase into phospholipids membranes, where it functions as an anion channel. Am. J. Physiol. 282:C1103–C1112

    CAS  Google Scholar 

  • Tulk B.M., Schlesinger P.H., Kapadia S.A., Edwards J.C. 2000. CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J. Biol. Chem. 275:26986–26993

    PubMed  CAS  Google Scholar 

  • Walsh K.B., Wang C. 1996. Effect of chloride channel blockers on the cardiac CFTR chloride and L-type calcium currents. Cardiovasc. Res. 32:391–399

    Article  PubMed  CAS  Google Scholar 

  • Warton K., Tonini R., Fairlie W.D., Matthews J.M., Valenzuela S.M., Qiu M.R., Wu W.M., Pankhurst S., Bauskin A.R., Harrop S.J., Campbell T.J., Curmi P.M., Breit S.N., Mazznti M. 2002. Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a pH-dependent two-state process to form chloride ion channels with identical characteristics to those observed in Chinese hamster ovary cells expressing CLIC1. J. Biol. Chem. 277:26003–26011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I thank Dr. Colin Nichols and members of his laboratory, including Qun Sha and Decha Enkvetchakul in the Department of Cell Biology and Physiology at Washington University School of Medicine for helpful discussions and technical advice. I thank Brian Plummer, Diana Johnson, and Ryan Emnet for technical assistance. The work was supported by a VA Merit Award and by NIH grants RO1 DK060551 and AR44838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, J.C. The CLIC1 Chloride Channel Is Regulated by the Cystic Fibrosis Transmembrane Conductance Regulator when Expressed in Xenopus Oocytes. J Membrane Biol 213, 39–46 (2006). https://doi.org/10.1007/s00232-006-0059-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0059-5

Keywords

Navigation