Skip to main content
Log in

The Effect of Dynasore Upon the Negative Interaction Between ENaC and CFTR Channels in Xenopus laevis Oocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Shroom is a family of related proteins linked to the actin cytoskeleton, and one of them, xShroom1, is constitutively expressed in Xenopus laevis oocytes which is required for the expression of the epithelial sodium channel (ENaC). On the other hand, ENaC and the cystic fibrosis transmembrane regulator (CFTR) are co-expressed in many types of cells with a negative or positive interaction depending on the studied tissues. Here, we measured the amiloride-sensitive ENaC currents (INaamil) and CFTR currents (ICFTR) with voltage clamp techniques in oocytes co-injected with ENaC and/or CFTR and xShroom1 antisense oligonucleotides. The objective was to study the mechanism of regulation of ENaC by CFTR when xShroom1 was suppressed and the endocytic traffic of CFTR was blocked. CFTR activation had a measurable negative effect on ENaC and this activation resulted in a greater inhibition of INaamil than with xShroom1 antisense alone. Our results with Dynasore, a drug that acts as an inhibitor of endocytic pathways, suggest that the changes in INaamil by xShroom1 downregulation were probably due to an increment in channel endocytosis. An opposite effect was observed when ICFTR was measured. Thus, when xShroom1 was downregulated, the ICFTR was larger than in the control experiments and this effect is not observed with Dynasore. A speculative explanation could be that xShroom1 exerts a dual effect on the endocytic traffic of ENaC and CFTR and these actions were canceled with Dynasore. In the presence of Dynasore, no difference in either INaamil or ICFTR was observed when xShroom1 was downregulated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almaça J, Kongsuphol P, Hieke B, Ousingsawat J, Viollet B, Schreiber R, Amaral MD, Kunzelmann K (2009) AMPK controls epithelial Na+ channels through Nedd4-2 and causes an epithelial phenotype when mutated. Pflugers Arch - Eur J Physiol 458:713–721. https://doi.org/10.1007/s00424-009-0660-4

    Article  CAS  Google Scholar 

  • Assef YA, Ozu M, Marino GI, Galizia L, Kotsias BA (2011) ENaC channels in oocytes from Xenopus laevis and their regulation by xShroom1 protein. Cell Physiol Biochem 28:259–266

    Article  CAS  Google Scholar 

  • Bachhuber T, König J, Voelcker T, Mürle B, Schreiber R, Kunzelmann K (2005) Cl- Interference with the Epithelial Na+ Channel ENaC. J Biol Chem 280:31587–31594. https://doi.org/10.1074/jbc.M504347200

    Article  CAS  PubMed  Google Scholar 

  • Bove PF, Grubb BR, Okada SF, Ribeiro CM, Rogers TD, Randell SH, O’Neal WK, Boucher RC (2010) Human alveolar type II cells secrete and absorb liquid in response to local nucleotide signaling. J Biol Chem 285:34939–34949

    Article  CAS  Google Scholar 

  • Briel M, Greger R, Kunzelmann K (1998) Cl transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. J Physiol 508:825–836

    Article  CAS  Google Scholar 

  • Boucherot A, Schreiber R, Kunzelmann K (2001) Role of CFTR’s PDZ1-binding domain, NBF1 and Cl- conductance in inhibition of epithelial Na+ channels in Xenopus oocytes. BB Acta 1515:64–71

    CAS  Google Scholar 

  • Broadbent SD, Ramjeesingh M, Bear CE, Argent BE, Linsdell P, Gray MA (2015) The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor. Pflugers Arch 467:1783–1794

    Article  CAS  Google Scholar 

  • Butterworth MB (2010) Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta 1802:1166–1177

    Article  CAS  Google Scholar 

  • Chabot H, Vives MF, Dagenais A, Grygorczyk C, Berthiaume Y, Grygorczyk R (1999) Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl conductance. J Membr Biol 169:175–188

    Article  CAS  Google Scholar 

  • Collawn JF, Lazrak A, Bebok Z, Matalon S (2012) The CFTR and ENaC debate: how important is ENaC in CF lung disease? Am J Physiol Lung Cell Mol Physiol 302:L1141–L1146

    Article  CAS  Google Scholar 

  • Collier DM, Snyder PM (2009) Extracellular protons regulate human ENaC by modulating Na+ self-inhibition. J Biol Chem 284:792–798. https://doi.org/10.1074/jbc.M806954200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Mónaco SM, Marino GI, Assef YA, Damiano AE, Kotsias BA (2009) Cell migration in BeWo cells and the role of epithelial sodium channels. J Membr Biol 232:1–13

    Article  Google Scholar 

  • Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS (1991) Chloride conductance expressed by AF508 and other mutant CFTRs in Xenopus oocytes. Science 254:1797–1799

    Article  CAS  Google Scholar 

  • Farinha CM, Matos P, Amaral MD (2013) Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. FEBS J 280:4396–4406

    Article  CAS  Google Scholar 

  • Gentzsch M, Dang H, Dang Y, Garcia-Caballero A, Suchindran H, Boucher RC, Stutts MJ (2010) The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na channel. J Biol Chem 285:32227–32232

    Article  CAS  Google Scholar 

  • Hagens O, Ballabio A, Kalscheuer V, Kraehenbuhl JP, Schiaffino MV, Smith P, Staub O, Hildebrand J, Wallingford JB (2006) A new standard nomenclature for proteins related to Apx and Shroom. BMC Cell Biol 7:18. https://doi.org/10.1186/1471-2121-7-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanukoglu I, Hanukoglu A (2017) Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579:95–132. https://doi.org/10.1016/j.gene.2015.12.061

    Article  CAS  Google Scholar 

  • Hildebrand JD, Leventry AD, Aideyman OP et al (2021) A modifier screen identifies regulators of cytoskeletal architecture as mediators of Shroom-dependent changes in tissue morphology. Biol Open 10:055640. https://doi.org/10.1242/bio.055640

    Article  CAS  Google Scholar 

  • Ilyaskin AV, Korbmacher C, Diakov A (2021) Inhibition of the epithelial sodium channel (ENaC) by connexin 30 involves stimulation of clathrin-mediated endocytosis. J Biol Chem 296:100404. https://doi.org/10.1016/j.jbc.2021.100404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpushev AV, Ilatovskaya DV, Pavlov TS, Negulyaev YA, Staruschenko A (2010) Intact cytoskeleton is required for small G protein dependent activation of the epithelial Na+ channel. PLoS ONE 5:e8827. https://doi.org/10.1371/journal.pone.0008827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashlan OB, Adelman JL, Okumura S, Blobner BM, Zuzek Z, Hughey RP, Kleyman TR, Grabe M (2011) Constraint-based, homology model of the extracellular domain of the epithelial Na+ channel α subunit reveals a mechanism of channel activation by proteases. J Biol Chem 286:649–660. https://doi.org/10.1074/jbc.M110.167098

    Article  CAS  PubMed  Google Scholar 

  • Kashlan OB, Blobner BM, Zuzek Z, Tolino M, Kleyman TR (2015) Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft. J Biol Chem 290:568–576. https://doi.org/10.1074/jbc.M114.606152

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann K (2011) Introduction to section V: assessment of CFTR function. Methods Mol Biol 741:407–418

    Article  CAS  Google Scholar 

  • Lee C, Scherr HM, Wallingford JB (2007) Shroom family proteins regulate-tubulin distribution and microtubule architecture during epithelial cell shape change. Development 134:1431–1441. https://doi.org/10.1242/dev.02828

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Le M-P, Wallingford JB (2009) The shroom family proteins play broad roles in the morphogenesis of thickened epithelial sheets. Dev Dyn 238:1480–1491

    Article  CAS  Google Scholar 

  • Liao H, Chen Y, Li Y et al (2018) CFTR is required for the migration of primordial germ cells during zebrafish early embryogenesis. Reproduction 156:261–268. https://doi.org/10.1530/REP-17-0681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Pribanic S, Debonneville A, Jiang C, Rotin D (2007) The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic 8:1246–1264. https://doi.org/10.1111/j.1600-0854.2007.00602.x

    Article  CAS  PubMed  Google Scholar 

  • Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    Article  CAS  Google Scholar 

  • Mall M, Bleich M, Kuehr J, Brandis M, Greger R, Kunzelmann K (1999) CFTR-mediated inhibition of epithelial Na+ conductance in human colon is defective in cystic fibrosis. Am J Physiol 277:G709–G716

    CAS  PubMed  Google Scholar 

  • Marino GI, Kotsias BA (2014) Cystic fibrosis transmembrane regulator (CFTR) in human trophoblast BeWo cells and its relation to cell migration. Placenta 35:92–98

    Article  CAS  Google Scholar 

  • Nagel G, Barbry P, Chabot H, Brochiero E, Hartung K, Grygorczyk R (2005) CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes. J Physiol 564:671–682

    Article  CAS  Google Scholar 

  • Palma AG, Galizia L, Kotsias BA et al (2016) CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein. Pflugers Arch Eur J Physiol 468:871–880

    Article  CAS  Google Scholar 

  • Palma AG, Kotsias BA, Marino GI (2014) CFTR and ENaC functions in cystic fibrosis. Medicina (b Aires) 74:133–139

    CAS  Google Scholar 

  • Pergel E, Veres I, Csigi GI, Czirják G (2021) Translocation of TMEM175 lysosomal potassium channel to the plasma membrane by dynasore compounds. Int J Mol Sci 22:10515. https://doi.org/10.3390/ijms221910515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prat AG, Holtzman EJ, Brown D, Cunningham CC, Reisin IL, Kleyman TR, McLaughlin M, Jackson GR Jr, Lydon J, Cantiello HF (1996) Renal epithelial protein (Apx) is an actin cytoskeleton-regulated Na+ channel. J Biol Chem 271:18045–18053

    Article  CAS  Google Scholar 

  • Qadri YJ, Cormet-Boyaka E, Benos DJ, Berdiev BK (2011) CFTR regulation of epithelial sodium channel. Methods Mol Biol 742:35–50

    Article  CAS  Google Scholar 

  • Rauh R, Hoerner C, Korbmacher C (2017) δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Xenopus laevis oocytes. Am J Physiol Lung Cell Mol Physiol 312:L277–L287

    Article  Google Scholar 

  • Reddy MM, Light MJ, Quinton PM (1999) Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function. Nature 402:301–304

    Article  CAS  Google Scholar 

  • Reddy MM, Quinton PM (2005) ENaC activity requires CFTR channel function independently of phosphorylation in sweat duct. J Membr Biol 207:23–33. https://doi.org/10.1007/s00232-005-0798-8

    Article  CAS  PubMed  Google Scholar 

  • Reddy MM, Wang XF, Quinton PM (2008) Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts. J Membr Biol 225:1–11. https://doi.org/10.1007/s00232-008-9126-4

    Article  CAS  PubMed  Google Scholar 

  • Santos JD, Pinto FR, Ferreira JF, Amaral MD, Zaccolo M, Farinha CM (2020) Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. Biochem J 477:2561–2580. https://doi.org/10.1042/BCJ20200287

    Article  CAS  PubMed  Google Scholar 

  • Schiller KR, Maniak PJ, O’Grady SM (2010) Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair. Am J Physiol Cell Physiol 299:C912–C921

    Article  CAS  Google Scholar 

  • Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272:25537–25541

    Article  CAS  Google Scholar 

  • Soundararajan R, Ziera T, Koo E, Ling K, Wang J, Borden SA, Pearce D (2012) Scaffold protein connector enhancer of kinase suppressor of Ras isoform 3 (CNK3) coordinates assembly of a multiprotein epithelial sodium channel (ENaC)-regulatory complex. J Biol Chem 287:33014–33025

    Article  CAS  Google Scholar 

  • Staub O, Verrey F, Kleyman TR, Benos DJ, Rossier BC, Kraehenbuhl J-P (1992) Primary structure of an apical protein from Xenopus laevis that participates in amiloride-sensitive sodium channel activity. J Cell Biol 119:1497–1506

    Article  CAS  Google Scholar 

  • Staub O, Dho S, Henry PC, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380

    Article  CAS  Google Scholar 

  • Strandvik B (2021) Is the ENaC dysregulation in CF an effect of protein-lipid interaction in the membranes? Int J Mol Sci 22:2739. https://doi.org/10.3390/ijms22052739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suaud L, Yan W, Carattino MD, Robay A, Kleyman TR, Rubenstein RC (2007) Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC. Am J Physiol Cell Physiol 292:C1553-1561

    Article  CAS  Google Scholar 

  • Sun YH, Reid B, Fontaine JH, Miller LA, Hyde DM, Mogilner A et al (2011) Airway epithelial wounds in rhesus monkey generate ionic currents that guide cell migration to promote healing. J Appl Physiol 111:1031–1041

    Article  CAS  Google Scholar 

  • Yan W, Samaha FF, Ramkumar M, Kleyman TR, Rubenstein RC (2004) Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes. J Biol Chem 279:23183–23192

    Article  CAS  Google Scholar 

  • Young A, Gentzsch M, Abban CY, Jia Y, Meneses PI, Bridges RJ, Bradbury NA (2009) Dynasore inhibits removal of wild-type and DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) from the plasma membrane. Biochem J 421:377–385

    Article  CAS  Google Scholar 

  • Voilley N, Lingueglia E, Champigny G, Mattéi M-G, Waldmann R, Lazdunski M, Barbry P (1994) The lung amiloride-sensitive Na+ channel: biophysical properties, pharmacology, ontogenesis, and molecular cloning. PNAS 91:247–251. https://doi.org/10.1073/pnas.91.1.247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H et al (2006) Clathrin-mediated endocytosis of the epithelial sodium channel. J Biol Chem 281:14129–14135

    Article  CAS  Google Scholar 

  • Wesch D, Althaus M, Miranda P, Cruz-Muros I, Fronius M, González-Hernández T, Clauss WG, Alvarez de la Rosa D, Giraldez T (2012) Differential N termini in epithelial Na+ channel δ-subunit isoforms modulate channel trafficking to the membrane. Am J Physiol Cell Physiol 302:C868–C879

    Article  CAS  Google Scholar 

  • Zachar RM, Skjødt K, Marcussen N et al (2015) The epithelial sodium channel γ-subunit is processed proteolytically in human kidney. J Am Soc Nephrol 26:95–106. https://doi.org/10.1681/ASN.2013111173

    Article  CAS  PubMed  Google Scholar 

  • Zuckerman JB, Chen X, Jacobs JD, Hu B, Kleyman TR, Smith PR (1999) Association of the epithelial sodium channel with Apx and alpha-spectrin in A6 renal epithelial cells. J Biol Chem 274:23286–23295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to Dr CM Fuller from the University of Alabama at Birmingham, AL and GI Marino and L Galizia from the University of Buenos Aires for their help.

Funding

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PRESTAMO BID PICT 2010-1861).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AGP. The first draft of the manuscript was written by BAK, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alejandra G. Palma.

Ethics declarations

Conflicts of interest

Authors declare no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, A.G., Kotsias, B.A. The Effect of Dynasore Upon the Negative Interaction Between ENaC and CFTR Channels in Xenopus laevis Oocytes. J Membrane Biol 255, 61–69 (2022). https://doi.org/10.1007/s00232-021-00212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-021-00212-y

Keywords

Navigation