Skip to main content
Log in

The Third Sodium Binding Site of Na,K-ATPase Is Functionally Linked to Acidic pH-Activated Inward Current

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Sodium- and potassium-activated adenosine triphosphatases (Na,K-ATPase) is the ubiquitous active transport system that maintains the Na+ and K+ gradients across the plasma membrane by exchanging three intracellular Na+ ions against two extracellular K+ ions. In addition to the two cation binding sites homologous to the calcium site of sarcoplasmic and endoplasmic reticulum calcium ATPase and which are alternatively occupied by Na+ and K+ ions, a third Na+-specific site is located close to transmembrane domains 5, 6 and 9, and mutations close to this site induce marked alterations of the voltage-dependent release of Na+ to the extracellular side. In the absence of extracellular Na+ and K+, Na,K-ATPase carries an acidic pH-activated, ouabain-sensitive “leak” current. We investigated the relationship between the third Na+ binding site and the pH-activated current. The decrease (in E961A, T814A and Y778F mutants) or the increase (in G813A mutant) of the voltage-dependent extracellular Na+ affinity was paralleled by a decrease or an increase in the pH-activated current, respectively. Moreover, replacing E961 with oxygen-containing side chain residues such as glutamine or aspartate had little effect on the voltage-dependent affinity for extracellular Na+ and produced only small effects on the pH-activated current. Our results suggest that extracellular protons and Na+ ions share a high field access channel between the extracellular solution and the third Na+ binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Apell H.-J., Karlish S.J.D. 2001. Functional properties of Na,K-ATPase, and their structural implications, as detected with biophysical techniques. J. Membr. Biol. 180:1–9

    Article  PubMed  CAS  Google Scholar 

  • Efthymiadis A., Rettinger J., Schwarz W. 1993. Inward-directed current generated by the Na+,K+ pump in Na+- and K+-free medium. Cell Biol. Int. 17:1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Feng J.N., Lingrel J.B. 1995. Functional consequences of substitutions of the carboxyl residue glutamate 779 of the Na,K-ATPase. Cell. Mol. Biol. Res. 41:29–37

    PubMed  CAS  Google Scholar 

  • Gadsby D.C., Rakowski R.F., De Weer P. 1993. Extracellular access to the Na,K pump: Pathway similar to ion channel. Science 260:100–103

    Article  PubMed  CAS  Google Scholar 

  • Geering K., 2001. The functional role of beta subunits in oligomeric P-type ATPases. J. Bioenerg. Biomembr. 33:425–438

    Article  PubMed  CAS  Google Scholar 

  • Geering K., Beggah A., Good P., Girardet S., Roy S., Schaer D., Jaunin P. 1996. Oligomerization and maturation of Na,K-ATPase - Functional interaction of the cytoplasmic NH2 terminus of the beta subunit with the alpha subunit. J. Cell Biol. 133:1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Girardet M., Geering K., Frantes J.M., Geser D., Rossier B.C., Kraehenbühl J.-P. 1981. Immunochemical evidence for a transmembrane orientation of both the Na+,K+-ATPase subunits. Biochemistry 20:6684–6691

    Article  PubMed  CAS  Google Scholar 

  • Hakansson K.O., Jorgensen P.L. 2003. Homology modeling of Na,K-ATPase - A putative third sodium binding site suggests a relay mechanism compatible with the electrogenic profile of Na+ translocation. Na,K-ATPase Relat. Cation Pumps 986:163–167

    CAS  Google Scholar 

  • Hilgemann D.W. 1994. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science 263:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Horisberger J.-D. 2004. Recent insights into the structure and mechanism of the sodium pump. Physiology 19:377–387

    Article  PubMed  CAS  Google Scholar 

  • Horisberger J.-D., Kharoubi-Hess S. 2002. Functional differences between α subunit isoforms of the rat Na,K-ATPase expressed in Xenopus oocytes. J. Physiol. 539:669–680

    Article  PubMed  CAS  Google Scholar 

  • Horisberger J.-D., Kharoubi-Hess S., Guennoun S., Michielin O. 2004. The 4th transmembrane segment of the Na,K-ATPase α subunit: A systematic mutagenesis study. J. Biol. Chem. 279:29542–29550

    Article  PubMed  CAS  Google Scholar 

  • Jaisser F., Jaunin P., Geering K., Rossier B.C., Horisberger J.-D. 1994. Modulation of the Na,K-pump function by the β-subunit isoforms. J. Gen. Physiol. 103:605–623

    Article  PubMed  CAS  Google Scholar 

  • Jewell-Motz E.A., Lingrel J.B. 1993. Site-directed mutagenesis of the Na,K-ATPase: Consequences of substitutions of negatively-charged amino acids localized in the transmembrane domains. Biochemistry 32:13523–13530

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P.L., Hakansson K.O., Karlish S.J.D. 2003. Structure and mechanism of Na,K-ATPase: Functional sites and their interactions. Annu. Rev. Physiol. 65:817–849

    Article  PubMed  CAS  Google Scholar 

  • Läuger, P., 1991. Na,K-ATPase. In: Electronic Ion Pumps, Sinauer Associates, Sunderland, MA 168–225

  • Li C., Capendeguy O., Geering K., Horisberger J.-D. 2005. A third Na+ binding site in the sodium pump. Proc. Natl. Acad. Sci. USA 102:12706–12711

    Article  PubMed  CAS  Google Scholar 

  • Melton D.A., Krieg P.A., Rebagliati M.R., Maniatis T., Zinn K., Green M.R. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056

    Article  PubMed  CAS  Google Scholar 

  • Nagle J.F., Morowitz H.J. 1978. Molecular mechanisms for proton transport in membranes. Proc. Natl. Acad. Sci. USA 75:298–302

    Article  PubMed  CAS  Google Scholar 

  • Nelson R.M., Long G.L. 1989. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal. Biochem. 180:147–151

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H., Toyoshima C. 2002. Homology modeling of the cation binding sites of the Na+K+-ATPase. Proc. Natl. Acad. Sci. USA 99:15977–15982

    Article  PubMed  CAS  Google Scholar 

  • Pomes R., Roux B. 2002. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys. J. 82:2304–2316

    Article  PubMed  CAS  Google Scholar 

  • Post R.L., Jolly P.C. 1957. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25:118–128

    Article  PubMed  CAS  Google Scholar 

  • Rakowski R.F., Vasilets L.A., LaTona J., Schwarz W. 1991. A negative slope in the current-voltage relationship of the Na+/K+ pump in Xenopus oocytes produced by reduction of external [K+]. J. Membr. Biol. 121:177–187

    Article  PubMed  CAS  Google Scholar 

  • Rettinger J. 1996. Characteristics of Na+/K+-ATPase mediated proton current in Na+- and K+-free extracellular solutions - Indications for kinetic similarities between H+/K+-ATPase and Na+/K+-ATPase. Biochim. Biophys. Acta 1282:207–215

    Article  PubMed  Google Scholar 

  • Sweadner K.J., Donnet C. 2001. Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem. J. 356:685–704

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Mizutani T. 2004. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Nakasako M., Nomura H., Ogawa H. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Nomura H. 2002. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

  • Van Huysse J.W., Jewell E.A., Lingrel J.B. 1993. Site-directed mutagenesis of a predicted cation binding site of Na,K-ATPase. Biochemistry 32:819–826

    Article  PubMed  Google Scholar 

  • Vasilyev A., Khater K., Rakowski R.F. 2004. Effect of extracellular pH on presteady-state and steady-state current mediated by the Na+/K+ pump. J. Membr. Biol. 198:65–76

    Article  PubMed  CAS  Google Scholar 

  • Wang X., Horisberger J.-D. 1995. A conformation of the Na,K-pump is permeable to proton. Am. J. Physiol. 37:C590–C595

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Swiss National Fund (grant 31–64793.01 to K. G. and grant 31–65441.01 to J.-D. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Daniel Horisberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Geering, K. & Horisberger, JD. The Third Sodium Binding Site of Na,K-ATPase Is Functionally Linked to Acidic pH-Activated Inward Current. J Membrane Biol 213, 1–9 (2006). https://doi.org/10.1007/s00232-006-0035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0035-0

Keywords

Navigation