Skip to main content
Log in

Characterization of Regulatory Volume Behavior by Fluorescence Quenching in Human Corneal Epithelial Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), τc = 19 min. In contrast, a hypotonic challenge induced a rapid (τc = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24°C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 μM), ouabain (1 mM), DIDS (1 mM), EIPA (100 μM), or Na+-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl channel and K+-Cl cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 μM), high K+ (20 mM) or Cl-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na+-K+-2Cl cotransporter (Na+-K+-2Cl) and the Na+-K+ pump. Inhibition of K+ and Cl channels and KCC but not Na+-K+-2Cl affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Al-Nakkash L., Iserovich P., Coca-Prados M., Yang H., Reinach P.S. 2004. Functional and molecular characterization of a volume-activated chloride channel in rabbit corneal epithelial cells. J. Membrane Biol. 201:41–49

    Article  CAS  Google Scholar 

  • Alvarez-Leefmans F.J. 1995. Use of ion-selective microelectrodes and fluorescent probes to measure cell volume. Meth. Neurosci. 27:361–391

    CAS  Google Scholar 

  • Araki-Sasaki K., Ohashi Y., Sasabe T., Hayashi K., Watanabe H., Tano Y., Handa H. 1995. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest. Ophthalmol. Vis. Sci. 36:614–621

    CAS  PubMed  Google Scholar 

  • Bildin V.N., Wang Z., Iserovich P., Reinach P.S. 2003. Hypertonicity-induced p38MAPK activation elicits recovery of corneal epithelial cell volume and layer integrity. J. Membrane Biol. 193:1–13

    Article  CAS  Google Scholar 

  • Bildin V.N., Yang H., Crook R.B., Fischbarg J., Reinach P.S. 2000. Adaptation by corneal epithelial cells to chronic hypertonic stress depends on upregulation of Na:K:2Cl cotransporter gene and protein expression and ion transport activity. J. Membrane Biol. 177:41–50

    Article  CAS  Google Scholar 

  • Bildin V.N., Yang H., Fischbarg J., Reinach P.S. 1998. Effects of chronic hypertonic stress on regulatory volume increase and Na-K-2Cl cotransporter expression in cultured corneal epithelial cells. Adv. Exp. Med. Biol. 438:637–642

    CAS  PubMed  Google Scholar 

  • Bonanno J.A. 1991. K(+)-H+ exchange, a fundamental cell acidifier in corneal epithelium. Am. J. Physiol. 260:C618–C625

    CAS  PubMed  Google Scholar 

  • Bonanno J.A., Klyce S.D., Cragoe E.J. Jr. 1989. Mechanism of chloride uptake in rabbit corneal epithelium. Am. J. Physiol. 257:C290–C296

    CAS  PubMed  Google Scholar 

  • Candia O.A. 2004. Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp. Eye Res. 78:527–535

    Article  CAS  PubMed  Google Scholar 

  • Culliford S., Ellory C., Lang H.J., Englert H., Staines H., Wilkins R. 2003. Specificity of classical and putative Cl(−) transport inhibitors on membrane transport pathways in human erythrocytes. Cell Physiol. Biochem. 13:181–188

    Article  CAS  PubMed  Google Scholar 

  • Di Fulvio M., Lauf P.K., Shah S., Adragna N.C. 2003. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells. Am. J. Physiol. 284:H1686–H692

    CAS  Google Scholar 

  • Di Fulvio M., Lincoln T.M., Lauf P.K., Adragna N.C. 2001. Protein kinase G regulates potassium chloride cotransporter-3 expression in primary cultures of rat vascular smooth muscle cells. J. Biol. Chem. 276:21046–21052

    CAS  PubMed  Google Scholar 

  • Diecke F.P., Beyer-Mears A. 1997. A mechanism for regulatory volume decrease in cultured lens epithelial cells. Curr. Eye Res. 16:279–288

    Article  CAS  PubMed  Google Scholar 

  • Echevarria M., Kuang K., Iserovich P., Li J., Preston G.M., Agre P., Fischbarg J. 1993. Cultured bovine corneal endothelial cells express CHIP28 water channels. Am. J. Physiol. 265:C1349–C1355

    CAS  PubMed  Google Scholar 

  • Farris R.L. 1994. Tear osmolarity—a new gold standard? Adv. Exp. Med. Biol. 350:495–503

    CAS  PubMed  Google Scholar 

  • Fischbarg J., Maurice D.M. 2004. An update on corneal hydration control. Exp Eye Res. 78:537–541

    Article  CAS  PubMed  Google Scholar 

  • Geck P., Pietrzyk C., Burckhardt B.C., Pfeiffer B., Heinz E. 1980. Electrically silent cotransport on Na+, K+ and Cl− in Ehrlich cells. Biochim. Biophys. Acta 600:432–447

    CAS  PubMed  Google Scholar 

  • Grinstein S., Dupre A., Rothstein A. 1982. Volume regulation by human lymphocytes. Role of calcium. J. Gen. Physiol. 849–868

    Article  CAS  PubMed  Google Scholar 

  • Hamann S., Kiilgaard J.F., Litman T., Alvarez-Leefmans F., Winther BR., Zeuthen T. 2002. Measurement of cell volume changes by fluorescence self-quenching. J. Fluoresc. 12:139–145

    Article  CAS  Google Scholar 

  • Hoffmann E.K., Simonsen L.O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:315–382

    CAS  PubMed  Google Scholar 

  • Huhtala A., Mannerstrom M., Alajuuma P., Nurmi S., Toimela T., Tahti H., Salminen L., Uusitalo H. 2002. Comparison of an immortalized human corneal epithelial cell line and rabbit corneal epithelial cell culture in cytotoxicity testing. J. Ocul. Pharmacol. Ther. 18:163–175

    Article  CAS  PubMed  Google Scholar 

  • Itoh R., Kawamoto S., Miyamoto Y., Kinoshita S., Okubo K. 2000. Isolation and characterization of a Ca(2+)-activated chloride channel from human corneal epithelium. Curr. Eye Res. 21:918–925

    Article  CAS  PubMed  Google Scholar 

  • Joiner C.H., Rettig R.K., Jiang M., Franco R.S. 2004. KCl cotransport mediates abnormal sulfhydryl-dependent volume regulation in sickle reticulocytes. Blood 104:2954–2960

    Article  CAS  PubMed  Google Scholar 

  • Kennedy B.G. 1994. Volume regulation in cultured cells derived from human retinal pigment epithelium. Am. J. Physiol. 266:C676–C683

    CAS  PubMed  Google Scholar 

  • Kregenow F.M. 1971. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J. Gen. Physiol. 58:396–412

    CAS  PubMed  Google Scholar 

  • Lauf P.K., Zhang J., Delpire E., Fyffe R.E., Mount D.B., Adragna N.C. 2001. K-Cl co-transport: immunocytochemical and functional evidence for more than one KCC isoform in high K and low K sheep erythrocytes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130:499–509

    CAS  PubMed  Google Scholar 

  • Levin M.H., Verkman A.S. 2005. CFTR-regulated chloride transport at the ocular surface in living mice measured by potential differences. Invest. Ophthalmol. Vis. Sci. 46:1428–1434

    Article  PubMed  Google Scholar 

  • Linderholm H. 1954. On the behavior of the sodium pump in from skin at various concentrations of Na ions in the solution on the epithelial side. Acta Physiol. Scand. 31:36–61

    CAS  PubMed  Google Scholar 

  • Lu L., Wang L., Shell B. 2003. UV-induced signaling pathways associated with corneal epithelial cell apoptosis. Invest Ophthalmol. Vis. Sci. 44:5102–5109

    PubMed  Google Scholar 

  • Lytle C., McManus T. 2002. Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am. J. Physiol. 283:C1422–C1431

    CAS  Google Scholar 

  • McManus M., Fischbarg J., Sun A., Hebert S., Strange K. 1993. Laser light-scattering system for studying cell volume regulation and membrane transport processes. Am. J. Physiol. 265:C562–C570

    CAS  PubMed  Google Scholar 

  • Mountian I., Chou K.Y., Van Driessche W. 1996. Electrolyte transport mechanisms involved in regulatory volume increase in C6 glioma cells. Am. J. Physiol. 271:C1041–C1048

    CAS  PubMed  Google Scholar 

  • Pardo L.A. 2004. Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19:285–292

    CAS  Google Scholar 

  • Rae J.L., Dewey J., Rae J.S. 1992. The large-conductance potassium ion channel of rabbit corneal epithelium is blocked by quinidine. Invest. Ophthalmol. Vis. Sci. 33:286–290

    CAS  PubMed  Google Scholar 

  • Reinach P., Ganapathy V., Torres-Zamorano V. 1994. A Na:H exchanger subtype mediates volume regulation in bovine corneal epithelial cells. Adv. Exp. Med. Biol. 350:105–110

    CAS  PubMed  Google Scholar 

  • Roderick C., Reinach P.S., Wang L., Lu L. 2003. Modulation of rabbit corneal epithelial cell proliferation by growth factor-regulated K+ channel activity. J. Membr. Biol. 196:41–50

    Article  CAS  PubMed  Google Scholar 

  • Russell J.M. 2000. Sodium-potassium-chloride cotransport. Physiol. Rev. 80:211–276

    CAS  PubMed  Google Scholar 

  • Shen M.R., Chou C.Y., Hsu K.F., Hsu Y.M., Chiu W.T., Tang M.J., Alper S.L., Ellory J.C. 2003. KCl cotransport is an important modulator of human cervical cancer growth and invasion. J. Biol. Chem. 278:39941–39950

    CAS  PubMed  Google Scholar 

  • Shen M.R., Chou C.Y., Hsu K.F., Liu H.S., Dunham P.B., Holtzman E.J., Ellory J.C. 2001. The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc. Natl. Acad. Sci. USA 98:14714–14719

    CAS  PubMed  Google Scholar 

  • Shen M.R., Droogmans G., Eggermont J., Voets T., Ellory J.C., Nilius B. 2000. Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J. Physiol. 529:385–394

    Article  CAS  PubMed  Google Scholar 

  • Shen M.R., Lin A.C., Hsu Y.M., Chang T.J., Tang M.J., Alper S.L., Ellory J.C., Chou C.Y. 2004. Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J. Biol. Chem. 279:40017–40025

    CAS  PubMed  Google Scholar 

  • Solenov E., Watanabe H., Manley G.T., Verkman A.S. 2004. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. 286:C426–C432

    Article  CAS  Google Scholar 

  • Strange K. 2004. Cellular volume homeostasis. Adv. Physiol. Educ. 28:155–159

    PubMed  Google Scholar 

  • Takahira M., Sakurada N., Segawa Y., Shirao Y. 2001. Two types of K+ currents modulated by arachidonic acid in bovine corneal epithelial cells. Invest Ophthalmol. Vis. Sci. 42:1847–1854

    CAS  PubMed  Google Scholar 

  • Taouil K., Hannaert P. 1999. Evidence for the involvement of K+ channels and K+-Cl cotransport in the regulatory volume decrease of newborn rat cardiomyocytes. Pfluegers Arch. 439:56–66

    Article  CAS  Google Scholar 

  • Thornhill W.B., Laris P.C. 1984. KCl loss and cell shrinkage in the Ehrlich ascites tumor cell induced by hypotonic media, 2-deoxyglucose and propranolol. Biochim. Biophys. Acta 773:207–218

    CAS  PubMed  Google Scholar 

  • Torres-Zamorano V., Ganapathy V., Reinach P. 1993. Characterization and subtype identification of the Na+-H+ exchanger in bovine corneal epithelium. Curr. Eye Res. 12:69–76

    CAS  PubMed  Google Scholar 

  • Verkman A.S. 2000. Water permeability measurement in living cells and complex tissues. J. Membrane Biol. 173:73–87

    Article  CAS  Google Scholar 

  • Walker V.E., Stelling J.W., Miley H.E., Jacob T.J. 1999. Effect of coupling on volume-regulatory response of ciliary epithelial cells suggests mechanism for secretion. Am. J. Physiol. 276:C1432–C1438

    CAS  PubMed  Google Scholar 

  • Wang L., Chen L., Jacob T.J. 2000. The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition. J. Physiol. 524:63–75

    CAS  PubMed  Google Scholar 

  • Wang L., Chen L., Zhu L., Rawle M., Nie S., Zhang J., Ping Z., Kangrong C., Jacob T.J. 2002. Regulatory volume decrease is actively modulated during the cell cycle. J. Cell Physiol. 193:110–119

    Article  CAS  PubMed  Google Scholar 

  • Wang L., Fyffe R.E., Lu L. 2004. Identification of a Kv3.4 channel in corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 45:1796–1803

    PubMed  Google Scholar 

  • Wang L., Li T., Lu L. 2003. UV-induced corneal epithelial cell death by activation of potassium channels. Invest. Ophthalmol. Vis. Sci. 44:5095–5101

    PubMed  Google Scholar 

  • Williams K.K., Watsky M.A. 2004. Bicarbonate promotes dye coupling in the epithelium and endothelium of the rabbit cornea. Curr. Eye Res. 28:109–120

    Article  CAS  PubMed  Google Scholar 

  • Wu X., Yang H., Iserovich P., Fischbarg J., Reinach P.S. 1997. Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release. J. Membrane Biol. 158:127–136

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institute of Health (NIH) grant EY04795

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.S. Reinach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capó-Aponte, J., Iserovich, P. & Reinach, P. Characterization of Regulatory Volume Behavior by Fluorescence Quenching in Human Corneal Epithelial Cells. J Membrane Biol 207, 11–22 (2005). https://doi.org/10.1007/s00232-005-0800-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0800-5

Keywords

Navigation