Skip to main content
Log in

Hypertonicity-induced p38MAPK Activation Elicits Recovery of Corneal Epithelial Cell Volume and Layer Integrity

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In hypertonicity-stressed (i.e., 600 mOsm) SV40-immortalized rabbit and human corneal epithelial cell layers (RCEC and HCEC, respectively), we characterized the relationship between time-dependent changes in translayer resistance, relative cell volume and modulation of MAPK superfamily activities. Sulforhodamine B permeability initially increased by 1.4- and 2-fold in RCEC and HCEC, respectively. Subsequently, recovery to its isotonic level only occurred in RCEC. Light scattering revealed that in RCEC 1) regulatory volume increase (RVI) extent was 20% greater; 2) RVI half-time was 2.5-fold shorter. However, inhibition of Na-K-2Cl cotransporter and Na/K-ATPase activity suppressed the RVI response more in HCEC. MAPK activity changes were as follows: 1) p38 was wave-like and faster as well as larger in RCEC than in HCEC (90-and 18-fold, respectively); 2) increases in SAPK/JNK activity were negligible in comparison to those of p38; 3) Erk1/2 activity declined to 30–40% of their basal values. SB203580, a specific p38 inhibitor, dose de-pendently suppressed the RVI responses in both cell lines. However, neither U0126, which inhibits MEK, the kinase upstream of Erk, nor SP600125, inhibitor of SAPK/JNK, had any effect on this response. Taken together, sufficient activation of the p38 limb of the MAPK superfamily during a hypertonic challenge is essential for maintaining epithelial cell volume and translayer resistance. On the other hand, Erk1/2 activity restoration seems to be dependent on cell volume recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araie, M., Maurice, D. 1987. The rate of diffusion of fluorophores through the corneal epithelium and stroma. Exp. Eye. Res. 44:73–87

    Article  PubMed  CAS  Google Scholar 

  • Araki, K., Ohashi, Y., Sasabe, T., Kinoshita, S., Hayashi, K., Yang, X.Z., Hosaka, Y., Aizawa, S., Handa, H. 1993. Immortalization of rabbit corneal epithelial cells by a recombinant SV40-adenovirus vector. Invest. Ophthalmol. Vis. Sci. 34:2665–2671

    PubMed  CAS  Google Scholar 

  • Bildin, V.N., Yang, H., Crook, R.B., Fischbarg, J., Reinach, P.S. 2000. Adaptation by corneal epithelial cells to chronic hypertonic stress depends on upregulation of Na:K:2Cl cotransporter gene and protein expression and ion transport activity. J. Membrane Biol. 177:41–50

    Article  CAS  Google Scholar 

  • Bildin, V.N., Yang, H., Fischbarg, J., Reinach, P.S. 1998. Effects of chronic hypertonic stress on regulatory volume increase and Na-K-2C1 cotransporter expression in cultured corneal epithelial cells. Adv. Exp. Med. Biol. 438:637–642

    PubMed  CAS  Google Scholar 

  • Butterfield, L., Zentrich. E., Beekman, A., Heasley, L.E. 1999. Stress- and cell type-dependent regulation of transfected c-Jun N-terminal kinase and mitogen-activated protein kinase kinase isoforms. Biochem. J. 338:681–686

    Article  PubMed  CAS  Google Scholar 

  • Candia, O.A., Patarca, R., Alvarez, L.J. 1998. Reduction of water permeability by anisotonic solutions in frog corneal epithelium. Invest. Ophthalmol. Vis. Sci. 39:378–384

    PubMed  CAS  Google Scholar 

  • Cohen, D.M. 1999. Signalling and gene regulation by urea and NaCl in the renal medulla. Clin. Exp. Pharmacol. Physiol. 26:69–73

    Article  PubMed  CAS  Google Scholar 

  • Denkert, C., Warskulat, U., Hensel, F., Haussinger, D. 1998. Osmolyte strategy in human monocytes and macrophages: involvement of p38MAPK in hyperosmotic induction of betaine and myoinositol transporters. Arch. Biochem. Biophys. 354: 172–180

    Article  PubMed  CAS  Google Scholar 

  • Duzgun, S.A., Rasque, H., Kito, H., Azuma, N., Li, W., Basson, M.D., Gahtan, V., Dudrick, S.J., Sumpio, B.E. 2000. Mitogen-activated protein phosphorylation in endothelial cells exposed to hyperosmolar conditions. J. Cell Biochem. 76: 567–571

    Article  PubMed  CAS  Google Scholar 

  • Fischbarg, J., Li, J., Kuang, K., Echevarria, M., Iserovich, P. 1993. Determination of volume and water permeability of plated cells from measurements of light scattering. Am. J. Physiol. 265: C1412–1423

    PubMed  CAS  Google Scholar 

  • Gillis, D., Shrode, L.D., Krump, E., Howard, CM., Rubie, E.A., Tibbies, L.A., Woodgett, J., Grinstein, S. 2001. Osmotic stimulation of the Na+/H+ exchanger NHE1: relationship to the activation of three MAPK pathways. J. Membrane Biol. 181:205–214

    CAS  Google Scholar 

  • Goss, G.G., Jiang, L., Vandorpe, D.H., Kieller, D., Chernova, M.N., Robertson, M., Alper, S.L. 2001. Role of JNK in hypertonic activation of Cl--dependent Na+/H+ exchange in Xenopus oocytes. Am. J. Physiol. 281:1978–1990

    Google Scholar 

  • Graf, J., Haussinger, D. 1996. Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism. J. Hepatol. 24:53–77

    Article  PubMed  CAS  Google Scholar 

  • Haas, M., McBrayer, D., Lytle, C. 1995. [Cl- i-dependent phosphorylation of the Na-K-Cl cotransport protein of dog tracheal epithelial cells. J. Biol. Chem. 270:28955–28961

    Article  PubMed  CAS  Google Scholar 

  • Hallows, K.R., Knauf, P.A. 1994. Regulatory volume decrease in HL-60 cells: importance of rapid changes in permeability of Cl- and organic solutes. Am. J. Physiol. 267:C1045–1056

    PubMed  CAS  Google Scholar 

  • Hoffert, J.D., Leitch, V., Agre, P., King, L.S. 2000. Hypertonic induction of aquaporin-5 expression through an ERK-dependent pathway. J. Biol. Chem. 275:9070–9077

    Article  PubMed  CAS  Google Scholar 

  • Liedtke, CM., Cole, T.S. 2002. Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK. Biochim. Biophys. Acta. 1589:77–88

    Article  PubMed  CAS  Google Scholar 

  • Lu, L., Reinach, P.S., Kao, W.W. 2001. Corneal epithelial wound healing. Exp. Biol. Med. (Maywood) 226:653–664

    CAS  Google Scholar 

  • Malek, A.M., Goss, G.G., Jiang, L., Izumo, S., Alper, S.L. 1998. Mannitol at clinical concentrations activates multiple signaling pathways and induces apoptosis in endothelial cells. Stroke 29:2631–2640

    PubMed  CAS  Google Scholar 

  • O’Neill, W.C. 1999. Physiological significance of volume-regulatory transporters. Am. J. Physiol. 276:C995-C1011

    PubMed  Google Scholar 

  • Palfrey, H.C., Pewitt, E.B. 1993. The ATP and Mg2+ dependence of Na+-K+-2Cl--cotransport reflects a requirement for protein phosphorylation: studies using calyculin A. Pfluegers Arch. 425:321–328

    Article  CAS  Google Scholar 

  • Pewitt, E.B., Hegde, R.S., Haas, M., Palfrey, H.C. 1990. The regulation of Na/K/2Cl cotransport and bumetanide binding in avian erythrocytes by protein phosphorylation and dephos-phorylation. Effects of kinase inhibitors and okadaic acid. J. Biol. Chem. 265:20747–20756

    PubMed  CAS  Google Scholar 

  • Reinach, P., Ganapathy, V., Torres-Zamorano, V. 1994. A Na:H exchanger subtype mediates volume regulation in bovine corneal epithelial cells. Adv. Exp. Med. Biol. 350:105–110

    PubMed  CAS  Google Scholar 

  • Roger, F., Martin, P.Y., Rousselot, M., Favre, H., Feraille, E. 1999. Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle’ s loop. Requirement of p38 kinase for the regulatory volume increase response. J. Biol. Chem. 274:34103–34110

    Article  PubMed  CAS  Google Scholar 

  • Romio, L., Zegarra, M., Varesio, L., Galietta, L.J.V. 2001. Regulation of taurine transport in murine macrophages. Amino Acids. 21:151–160

    Article  PubMed  CAS  Google Scholar 

  • Russell, J.M. 2000. Sodium-potassium-chloride cotransport. Physiol. Rev. 80:211–276

    PubMed  CAS  Google Scholar 

  • Sheikh-Hamad, D., Di Mari, J., Suki, W.N., Safirstein, R., Watts, B.A., 3rd, Rouse, D. 1998. p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin-Darby canine kidney cells. J. Biol. Chem. 273:1832–1837

    Article  PubMed  CAS  Google Scholar 

  • Sinning, R., Schliess, F., Kubitz, R., Haussinger, D. 1997. Osmo-signalling in C6 glioma cells. FEBS Lett. 400:163–167

    Article  PubMed  CAS  Google Scholar 

  • Sun, D., O’Donnell, M.E. 1996. Astroglial-mediated phosphorylation of the Na-K-Cl cotransporter in brain microvessel endothelial cells. Am. J. Physiol. 271:C620–627

    PubMed  CAS  Google Scholar 

  • Terada, Y., Tomita, K., Homma, M.K., Nonoguchi, H., Yang, T., Yamada, T., Yuasa, Y., Krebs, E.G., Sasaki, S., Marumo, F. 1994. Sequential activation of Raf-1 kinase, mitogen-activated protein (MAP) kinase kinase, MAP kinase, and S6 kinase by hyperosmolality in renal cells. J. Biol. Chem. 269:31296–31301

    PubMed  CAS  Google Scholar 

  • Watts, B.A., 3rd, Di Mari, J.F., Davis, R.J., Good, D.W. 1998. Hypertonicity activates MAP kinases and inhibits HCO-3 absorption via distinct pathways in thick ascending limb. Am. J. Physiol. 275:F478–486

    PubMed  CAS  Google Scholar 

  • Wojtaszek, P.A., Heasley, L.E., Siriwardana, G., Berl, T. 1998. Dominant-negative c-Jun NH2-terminal kinase 2 sensitizes renal inner medullary collecting duct cells to hypertonicity-induced lethality independent of organic osmolyte transport. J. Biol. Chem. 273:800–804

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, S., Hirai, S.I., Ohno, S. 2000. Hyperosmolality induces activation of cPKC and nPKC, a requirement for ERK1/2 activation in NIH/3T3 cells. Am. J. Physiol. 278:C102–109.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bildin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bildin, V.N., Wang, Z., Iserovich, P. et al. Hypertonicity-induced p38MAPK Activation Elicits Recovery of Corneal Epithelial Cell Volume and Layer Integrity. J. Membrain Biol. 193, 1–13 (2003). https://doi.org/10.1007/s00232-002-2002-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-002-2002-8

Key words

Navigation