Skip to main content
Log in

Signaling Pathways in the Biphasic Effect of ANG II on Na+/H+ Exchanger in T84 Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The effect of ANG II on pHi, [Ca2+]i and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pHi via the Na+/H+ exchanger was examined in the first 2 min following the acidification of pHi with a NH4Cl pulse. In the control situation, the pHi recovery rate was 0.118 ± 0.001 (n = 52) pH units/min and ANG II (10−12 M or 10−9 M) increased this value (by 106% or 32%, respectively) but ANG II (10−7 M) decreased it to 47%. The control [Ca2+]i was 99 ± 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pHi recovery and [Ca2+]i. To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na+/H+ exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10−12 – 10−7 M ANG II) and by increases of [Ca2+]i in the lower range (at 10−12 M ANG II) and 2) inhibition of the exchanger at high [Ca2+]i levels (at 10−9 – 10−7 M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Binder H.J., Sandle G.E. 1994. Electrolyte transport in the mammalian colon. In: L.R. Johnson, editor. Physiology of the Gastrointestinal Tract. Raven Press, New York pp 2133–2171

    Google Scholar 

  • Binder H.J. 2003. Intestinal fluid and electrolyte movement. In: W.F. Boron, E.L. Boulpaep, editors. Medical Physiology. Saunders, Philadelphia pp 930–946

    Google Scholar 

  • Boron W.F., Weer P. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J. Gen. Physiol. 67:91–112

    Article  PubMed  Google Scholar 

  • Cano A., Miller R.T., Alpern R.J., Preisig P.A. 1994. Angiotensin II stimulation of Na-H antiporter activity is cAMP independent in OKP cells. Am. J. Physiol. 266:C1603–C1608

    PubMed  Google Scholar 

  • Devor D.C., Frizzell R.A. 1998. Modulation of K+ channels by arachidonic acid in T84 cells. Inhibition of Ca2+-dependent K+ channel. Am. J. Physiol. 274:C138–C148

    PubMed  Google Scholar 

  • Dharmsathaphorn K., McRoberts J.A., Mandel K.G., Tisdale L.D., Masui H. 1984. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am. J. Physiol. 246:G204–G208

    PubMed  Google Scholar 

  • Douglas J.G., Hopper U. 1994. Novel aspects of angiotensin receptors and signal transduction in the kidney. Annu. Rev. Physiol. 56:649–669

    Article  PubMed  Google Scholar 

  • Du Z., Ferguson W., Wang T. 2003. Role of PKC and calcium in modulation of effects of angiotensin II on sodium transport in proximal tubule. Am. J. Physiol. 284:F688–F692

    Google Scholar 

  • Foster E., Dudeja P., Brasitus T. 1986. Na+/H+ exchange in rat colonic brush-border membrane vesicles. Am. J. Physiol. 250:G781–G787

    PubMed  Google Scholar 

  • Grynkiewicz G., Poenie M., Tsien R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450

    PubMed  Google Scholar 

  • Harris P.J., Young J.A. 1977. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pfluegers Arch. 367:295–297

    Article  Google Scholar 

  • Hecht G., Hodges K., Gill R.K., Kear F., Tyagi S., Malakooti J., Ramaswamy K., Dudeja P.K. 2004. Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am. J. Physiol. 287:G370–G378

    Google Scholar 

  • Hirasawa K., Sato Y., Hosoda Y., Yamamoto T., Hanai H. 2002. Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J. Histochem. Cytochem. 50:275–282

    PubMed  Google Scholar 

  • Houillier P., Chambrey R., Achard J.M., Froissart M., Poggioli J., Paillard M. 1996. Signaling pathways in the biphasic effect of angiotensin II on apical Na+/H+ antiport activity in proximal tubule. Kidney Int. 50:1496–1505

    PubMed  Google Scholar 

  • Liu F.Y., Cogan M.G. 1987. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J. Clin. Invest. 80:272–275

    PubMed  Google Scholar 

  • Musa-Aziz R., Mello-Aires M. 2002. Angiotensin II modulates Na+/H+ exchanger in epithelial colon cells. J. Am. Soc. Nephrol 13:SU–P0052

    Google Scholar 

  • Musa-Aziz, R., Mello-Aires, M. 2005. Action of ANG II and ANP on colon epithelial cells. Pfluegers Arch. in press

  • Navar L.G., Harrison-Bernard L.M., Wang C.T., Cervenka L., Mitchell K.D. 1999. Concentrations and actions of intraluminal angiotensin II. J. Am. Soc. Nephrol. 10:S189–S195

    PubMed  Google Scholar 

  • Oliveira-Souza M., Mello-Aires M. 2000. Interaction of angiotensin II and atrial natriuretic peptide on pHi regulation in MDCK cells. Am. J. Physiol. 279:F944–F953

    Google Scholar 

  • Oliveira-Souza M., Musa-Aziz R., Malnic G., Mello-Aires M. 2004. Arginine vasopressin stimulates H+-ATPase in MDCK cells via VI (cell Ca2+) and V2 (cAMP) receptors. Am. J. Physiol. 286:F402–F408

    Google Scholar 

  • Phillips M.I., Speakman E.A., Kimura B. 1993. Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regul. Pept. 43:1–20

    Article  PubMed  Google Scholar 

  • Poggioli J., Lazar G., Houillier P., Gardin J.P., Achard J.M., Paillard M. 1992. Effects of angiotensin II and non peptide receptor antagonists on transduction pathways in rat proximal tubule. Am. J. Physiol. 263:C750–C758

    PubMed  Google Scholar 

  • Pouysségur J. 1994. Molecular biology and hormonal regulation of vertebrate Na+/H+ exchanger isoforms. Renal Physiol. Biochem. 17:190–193

    PubMed  Google Scholar 

  • Ramirez, M.A., Beltran, A.R., Malnic, G., Rebouças, N.A. 2003. Kinetics of an apical Na+/H+ exchanger in T84 colon cells: effect of heat-stable E. coli enterotoxin (STA) (abstract). World Congress of Nephrology, M3

  • Ramirez M.A., Toriano R., Parisi M., Malnic G. 2000. Control of cell pH in the T84 colon cell line. J. Membrane Biol. 177:149–157

    Article  Google Scholar 

  • Reilly A.M., Harris P.J., Williams D.A. 1995. Biphasic effect of angiotensin II on intracellular sodium concentration in rat proximal tubules. Am. J. Physiol. 269:F374–F380

    PubMed  Google Scholar 

  • Romero M.F., Hopfer U., Madhun Z.T., Zhou W., Douglas J.G. 1991. Angiotensin II actions in the rabbit proximal tubule. Renal Physiol. Biochem. 14:199–207

    PubMed  Google Scholar 

  • Sechi L.A., Valentin J.P., Griffin C.A., Schambelan M. 1993. Autoradiographic characterization of angiotensin II receptor subtypes in rat intestine. Am. J. Physiol. 265:G21–G27

    PubMed  Google Scholar 

  • Tararthuch A.L., Fernandez R., Ramirez M.A., Malnic G. 2002. Factors affecting ammonium uptake by C11 clone of MDCK cells. Pfluegers Arch. 445:194–201

    Article  Google Scholar 

  • Wakabayashi S., Bertrand B., Ikeda T., Pouysségur J., Shigekawa M. 1994. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation-defective. J. Biol Chem. 269: 13710–13715

    PubMed  Google Scholar 

  • Wakabayashi S., Shigekawa M., Pouysségur J. 1997. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol. Rev. 77:51–74

    PubMed  Google Scholar 

  • Weinman E.J., Hanley R., Morell G., Yuan N., Steplock D., Bui G., Shenolikar S. 1992. Regulation of the renal Na+-H+ exchanger by calcium calmodulin-dependent multifunctional protein kinase II. Miner. Electrol. Metab. 18:35–39

    Google Scholar 

  • Weintraub W.H., Machen T.E. 1989. pH regulation in hepatoma cells: roles for Na-H exchange, Cl-HCO3 exchange, and Na-HCO3 cotransport. Am. J. Physiol. 257:G317–G327

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Programa de Apoio à Núcleos de Excelência (PRONEX) and Conselho Nacional de Pesquisas (CNPq). The authors thank Dr. Gerhard Malnic for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mello-Aires.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musa-Aziz, R., Oliveira-Souza, M. & Mello-Aires, M. Signaling Pathways in the Biphasic Effect of ANG II on Na+/H+ Exchanger in T84 Cells. J Membrane Biol 205, 49–60 (2005). https://doi.org/10.1007/s00232-005-0762-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0762-7

Keywords

Navigation