Skip to main content
Log in

Membrane Cholesterol Regulates Smooth Muscle Phasic Contraction

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The regulation of contractile activity in smooth muscle cells involves rapid discrimination and processing of a multitude of simultaneous signals impinging on the membrane before an integrated functional response can be generated. The sarcolemma of smooth muscle cells is segregated into caveolar regions-largely identical with cholesterol-rich membrane rafts—and actin-attachment sites, localized in non-raft, glycerophospholipid regions. Here we demonstrate that selective extraction of cholesterol abolishes membrane segregation and disassembles caveolae. Simultaneous measurements of force and [Ca2+]i in rat ureters demonstrated that extraction of cholesterol resulted in inhibition of both force and intracellular Ca2+ signals. Considering the major structural reorganization of cholesterol-depleted sarcolemma, it is intriguing to note that decreased levels of membrane cholesterol are accompanied by a highly specific inhibition of phasic, but not tonic contractions. This implies that signalling cascades that ultimately lead to either phasic or tonic response may be spatially segregated in the plane of the sarcolemma. Replenishment of cholesterol restores normal contractile behavior. In addition, the tissue function is re-established by inhibiting the large-conductance K+-channel. Sucrose gradient ultracentrifugation in combination with Western blotting analysis demonstrates that its α-subunit is associated with detergent-resistant membranes, suggesting that the channel might be localized within the membrane rafts in vivo. These findings are important in understanding the complex signalling pathways in smooth muscle and conditions such as premature labor and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • R.G.W. Anderson (1998) ArticleTitleThe caveolae membrane system Annu. Rev. Biochem. 67 199–225 Occurrence Handle10.1146/annurev.biochem.67.1.199 Occurrence Handle1:CAS:528:DyaK1cXlsFOmsL0%3D Occurrence Handle9759488

    Article  CAS  PubMed  Google Scholar 

  • E.B. Babiychuk R.J.T.S. Palstra J. Schaller U. Kämpfer A. Draeger (1999) ArticleTitleCharacterization of a reversible cytoskeleton-annexin-membrane complex in smooth muscle J. Biol. Chem. 274 35191–35195 Occurrence Handle10.1074/jbc.274.49.35191 Occurrence Handle1:CAS:528:DyaK1MXnvFyrurw%3D Occurrence Handle10575003

    Article  CAS  PubMed  Google Scholar 

  • E.B. Babiychuk A. Draeger (2000) ArticleTitleAnnexins in cell membrane dynamics: Ca2+-regulated association of lipid microdomains J. Cell Biol. 150 1113–1123 Occurrence Handle10.1083/jcb.150.5.1113 Occurrence Handle1:CAS:528:DC%2BD3cXmtlegtL0%3D Occurrence Handle10973999

    Article  CAS  PubMed  Google Scholar 

  • E.M.L. Bastiaanse K.M. Hold A. Laarse (1997) ArticleTitleThe effect of membrane cholesterol content on ion transport processes in plasma membranes Cardiovasc. Res. 33 272–283 Occurrence Handle10.1016/S0008-6363(96)00193-9 Occurrence Handle1:CAS:528:DyaK2sXhvVSmsLo%3D Occurrence Handle9074689

    Article  CAS  PubMed  Google Scholar 

  • V. Bolotina V. Omelynonko B. Heyes U. Ryan P. Bregestovaki (1989) ArticleTitleVariations of membrane cholesterol alter the kinetics of Ca2+-dependent K+-channels and membrane fluidity in vascular smooth muscle cells. Pfluegers Arch. 415 262–268 Occurrence Handle1:CAS:528:DyaK3cXlt12qsQ%3D%3D

    CAS  Google Scholar 

  • T.B. Bolton S.A. Prestwich A.V. Zholos D.V. Gordienko (1999) ArticleTitleExitation-contraction coupling in gastrointestinal and other smooth muscles Annu. Rev. Physiol. 61 85–115 Occurrence Handle10.1146/annurev.physiol.61.1.85 Occurrence Handle1:CAS:528:DyaK1MXitVejsrY%3D Occurrence Handle10099683

    Article  CAS  PubMed  Google Scholar 

  • D.A. Brown E. London (1998) ArticleTitleFunctions of lipid rafts in biological membranes Annu. Rev. Cell. Devel. Biol. 14 111–136 Occurrence Handle10.1146/annurev.cellbio.14.1.111 Occurrence Handle1:CAS:528:DyaK1cXnvFyju7w%3D

    Article  CAS  Google Scholar 

  • D.A. Brown E. London (2000) ArticleTitleStructure and function of sphingolipid- and cholesterol-rich membrane rafts J. Biol. Chem. 275 17221–17224 Occurrence Handle10.1074/jbc.R000005200 Occurrence Handle1:CAS:528:DC%2BD3cXktFalu70%3D Occurrence Handle10770957

    Article  CAS  PubMed  Google Scholar 

  • T.V. Burdyga S. Wray (1998) ArticleTitleThe effect of inhibition of myosin light chain kinase by Wortmannin on intracellular [Ca2+], electrical activity and force in phasic smooth muscle Pfluegers Arch. 436 801–803 Occurrence Handle10.1007/s004240050705 Occurrence Handle1:CAS:528:DyaK1cXltFylsL8%3D

    Article  CAS  Google Scholar 

  • K. Dreja M. Voldstedlund J. Vinter J. Tannum-Jensen P. Hellstrand K. Sward (2002) ArticleTitleCholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction Arterioscler. Thromb. Vasc. Biol. 22 1267–1272 Occurrence Handle10.1161/01.ATV.0000023438.32585.A1 Occurrence Handle1:CAS:528:DC%2BD38Xmt12jurs%3D Occurrence Handle12171786

    Article  CAS  PubMed  Google Scholar 

  • G. Gimpl F. Fahrenholz (2000) ArticleTitleHuman oxytocin receptors in cholesterol-rich vs. cholesterol-poor microdomains of plasma membrane Eur. J. Biochem. 267 2483–2497 Occurrence Handle10.1046/j.1432-1327.2000.01280.x Occurrence Handle1:CAS:528:DC%2BD3cXjtlKjurk%3D Occurrence Handle10785367

    Article  CAS  PubMed  Google Scholar 

  • M.M. Gleason M.S. Medow T.N. Tulenko (1991) ArticleTitleExcess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells Circ. Res. 69 216–227 Occurrence Handle1:CAS:528:DyaK3MXkvFSgsro%3D Occurrence Handle2054935

    CAS  PubMed  Google Scholar 

  • T. Harder K. Simons (1997) ArticleTitleCaveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains Curr. Opin. Cell Biol. 9 534–542 Occurrence Handle10.1016/S0955-0674(97)80030-0 Occurrence Handle1:CAS:528:DyaK2sXltVWgs70%3D Occurrence Handle9261060

    Article  CAS  PubMed  Google Scholar 

  • A. Horowitz C.B. Menice R. Laporte K.G. Morgan (1996) ArticleTitleMechanisms of smooth muscle contraction Physiol. Rev. 76 967–1003 Occurrence Handle1:CAS:528:DyaK28XntVSjt7Y%3D Occurrence Handle8874491

    CAS  PubMed  Google Scholar 

  • N. Ishizaka K.K. Griendling B. Lassegue R.W. Alexander (1998) ArticleTitleAngiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation Hypertension. 32 459–466 Occurrence Handle1:CAS:528:DyaK1cXmtlyjs70%3D Occurrence Handle9740611

    CAS  PubMed  Google Scholar 

  • E.P. Kilsdonk P.G. Yancey G.W. Stoudt F.W. Bangerter W.J. Johnson M.C. Phillips G.H. Rothblat (1995) ArticleTitleCellular cholesterol efflux mediated by cyclodextrins J. Biol. Chem. 270 17250–17256 Occurrence Handle10.1074/jbc.270.29.17250 Occurrence Handle1:CAS:528:DyaK2MXntVOrtr4%3D Occurrence Handle7615524

    Article  CAS  PubMed  Google Scholar 

  • B.C. Kone (2000) ArticleTitleProtein-protein interactions controlling nitric oxide synthases Ada Physiol. Scand. 168 27–31 Occurrence Handle10.1046/j.1365-201x.2000.00629.x Occurrence Handle1:CAS:528:DC%2BD3cXhvVelsbg%3D

    Article  CAS  Google Scholar 

  • M. Lohn M. Furstenau V. Sagach M. Elger W. Schulze F.C. Luft H. Haller M. Gollasch (2000) ArticleTitleIgnition of calcium sparks in arterial and cardiac muscle through caveolae, Circ. Res. 87 1034–1039 Occurrence Handle1:CAS:528:DC%2BD3cXoslygsbk%3D Occurrence Handle11090549

    CAS  PubMed  Google Scholar 

  • R.G. Parton (2001) ArticleTitleLife without caveolae Science 293 2449–2452 Occurrence Handle10.1126/science.1065677 Occurrence Handle11498544

    Article  PubMed  Google Scholar 

  • R.G. Parton K. Simons (1995) ArticleTitleDigging into caveolae Science 269 1398–1399 Occurrence Handle1:CAS:528:DyaK2MXnvFCluro%3D Occurrence Handle7660120

    CAS  PubMed  Google Scholar 

  • E. Pongo Z. Balla K. Mubagwa W. Flameng I. Edes Z. Szilvassy P. Ferdinandy (2001) ArticleTitleDeterioration of the protein kinase C-K(ATP) channel pathway in regulation of coronary flow in hypercholesterolaemic rabbits Eur. J. Pharmacol 418 217–222 Occurrence Handle10.1016/S0014-2999(01)00954-2 Occurrence Handle1:CAS:528:DC%2BD3MXjtlCht7c%3D Occurrence Handle11343693

    Article  CAS  PubMed  Google Scholar 

  • K.M. Sanders (2001) ArticleTitleMechanisms of calcium handling in smooth muscles J. Appl. Physiol. 91 1438–1449 Occurrence Handle1:CAS:528:DC%2BD3MXmvV2qtL0%3D Occurrence Handle11509546

    CAS  PubMed  Google Scholar 

  • L. Sen R.A. Bialecki E. Smith T.W. Smith W.S. Colucci (1992) ArticleTitleCholesterol increases the L-type voltage-sensitive calcium channel current in arterial smooth muscle cells Circ Res. 71 1008–1014 Occurrence Handle1:CAS:528:DyaK3sXnslynsA%3D%3D Occurrence Handle1325295

    CAS  PubMed  Google Scholar 

  • K. Simons E. Ikonen (1997) ArticleTitleFunctional rafts in cell membranes Nature. 387 569–572 Occurrence Handle10.1038/42408 Occurrence Handle1:CAS:528:DyaK2sXktFCitrk%3D Occurrence Handle9177342

    Article  CAS  PubMed  Google Scholar 

  • K. Simons D. Toomre (2000) ArticleTitleLipid rafts and signal transduction Nature Rev. Mol. Cell Biol. 1 31–39 Occurrence Handle10.1038/35036052 Occurrence Handle1:CAS:528:DC%2BD3MXivVGjtbo%3D

    Article  CAS  Google Scholar 

  • A.P. Somlyo A.V. Somlyo (2000) ArticleTitleSignal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II J. Physiol. 522 177–185 Occurrence Handle1:CAS:528:DC%2BD3cXht12ns7s%3D Occurrence Handle10639096

    CAS  PubMed  Google Scholar 

  • T.N. Tulenko R. Bialecki M. Gleason G. D’Angelo (1990) ArticleTitleIon channels, membrane lipids and cholesterol: a role for membrane lipid domains in arterial function Prog. Clin. Biol. Res. 334 187–203 Occurrence Handle1:STN:280:By%2BC2srls1c%3D Occurrence Handle1689856

    CAS  PubMed  Google Scholar 

  • R.T. Watson S. Shigematsu S-H. Chiang S. Mora M. Kanzaki I.G. Macara A.R. Saltiel J.E. Pessin (2001) ArticleTitleLipid raft microdomain compartmentalization of TC10 is required for insulin signalling and GLUT4 translocation J. Cell Biol. 154 829–840 Occurrence Handle10.1083/jcb.200102078 Occurrence Handle1:CAS:528:DC%2BD3MXmt1Shtro%3D Occurrence Handle11502760

    Article  CAS  PubMed  Google Scholar 

  • W.F.C. de Weerd M.F. Leeb-Lundberg (1997) ArticleTitleBradykinin sequesters B2 bradykinin receptors and the receptor-coupled Gα subunits Gαq and Gαi in caveolae in DDT1 MF-2 smooth muscle cells J. Biol. Chem. 272 17858–17866 Occurrence Handle10.1074/jbc.272.28.17858 Occurrence Handle1:CAS:528:DyaK2sXksFyiu70%3D Occurrence Handle9211942

    Article  CAS  PubMed  Google Scholar 

  • P.G. Yancey W.V. Rodrigueza E.P. Kilsdonk G.W. Stoudt W.J. Johnson M.C. Phillips G.H. Rothblat (1996) ArticleTitleCellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux J. Biol. Chem. 271 6026–6034

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Medical Research Council, UK (to SW), the Swiss National Science Foundation, grants 31-66963.01 (to AD) and 7UKPJ62216 (SCOPES, to AD and EB) and the Novartis Foundation 00B30 (to AD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Babiychuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babiychuk, E.B., Smith, R.D., Burdyga, T. et al. Membrane Cholesterol Regulates Smooth Muscle Phasic Contraction. J. Membrane Biol. 198, 95–101 (2004). https://doi.org/10.1007/s00232-004-0663-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-004-0663-1

Keywords

Navigation