Skip to main content

Mechanical Stretch and Intermediate-Conductance Ca2+-Activated K+ Channels in Arterial Smooth Muscle Cells

  • Chapter
  • First Online:
Mechanically Gated Channels and their Regulation

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

Abstract

We describe the role and regulation of intermediate-conductance Ca2+-activated K+ (IKca) channels in cardiovascular pathophysiologies such as hypertension and restenosis. Blood vessels in vivo are continuously exposed to hemodynamic forces. These include shear stresses on the luminal surface generated by blood flow, cyclic distension due to the vascular wave caused by the pulsatility of the blood flow, and endocrine and local factors including angiotensin II (Ang II) and endothelin-1. Cell membrane stretch activates IKca channels. The activation is associated with extracellular Ca2+ influx through stretch-activated nonselective cation channels, and is also modulated by the F-actin cytoskeleton and the activation of PKC. Ang II activates IKca channels through the activation of protein kinase C, and the AT1 receptor is involved in the regulation of these channels. Mechanical stress and Ang II regulate the migration and proliferation of vascular smooth muscle cells. The modulation of IKca channels in artery smooth muscle cells has an important role in cell migration and proliferation. In this review, we will discuss the physiological and pathophysiological role of IKca channel in cells closely associated with vascular biology and the initiation and progression of vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander SPH, Mathie A, Peters JA (2008) Guide to receptors and Channels (GRAC), 3rd edition (2008 revision). Br J Pharmacol 153(Suppl. 2):S1–S209

    PubMed  Google Scholar 

  • Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ (1991) Pro-Leu-Ser/Thr-Pro us consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem 266:15277–15285

    PubMed  CAS  Google Scholar 

  • Archer S, Huang J, Reeve H, Hampl V, Tolarova S, Michelakis E, Weir E (1996) Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res 78:431–442

    PubMed  CAS  Google Scholar 

  • Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555

    PubMed  CAS  Google Scholar 

  • Bentzen BH, Nardi A, Calloe K, Madsen LS, Olesen SP, Grunnet M (2007) The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol Pharmacol 72:1033–1044

    PubMed  CAS  Google Scholar 

  • Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B, Benos DJ, Ismailov II (1996) Regulation of epithelial sodium channels by short actin filaments. J Biol Chem 271:17704–17710

    PubMed  CAS  Google Scholar 

  • Bond CT, Maylie J, Adelman JP (1999) Small-conductance calcium-activated potassium channels. Ann N Y Acad Sci 868:370–378

    PubMed  CAS  Google Scholar 

  • Brayden J, Nelson M (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535

    PubMed  CAS  Google Scholar 

  • Campos Rosa J, Galanakis D, Piergentili A, Bhandari K, Ganellin CR, Dunn PM, Jenkinson DH (2000) Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, nonpeptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. J Med Chem 43:420–431

    PubMed  CAS  Google Scholar 

  • Cantiello HF (1996) Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator. Exp Physiol 81:505–514

    PubMed  CAS  Google Scholar 

  • Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM (2001) Modulation of recombinant small-conductance Ca2+-activated K+ channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharacol Exp Ther 296:683–689

    CAS  Google Scholar 

  • Castle NA (1999) Recent advances in the biology of small conductance calcium-activated potassium channels. Perspect Drug Discov Design 15(16):131–154

    Google Scholar 

  • Cory JG, Carter GL, Karl RC (1987) Calcium ion-dependent proliferation of L1210 cells in culture. Biochem Biophys Res Commun 145:556–62

    PubMed  CAS  Google Scholar 

  • Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    PubMed  CAS  Google Scholar 

  • Dunn PM (1999) UCL 1684: a potent blocker of Ca2+-activated K+ channel in rat adrenal chromaffin cells in culture. Eur J Pharmacol 368:119–123

    PubMed  CAS  Google Scholar 

  • Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 274:5746–5754

    PubMed  CAS  Google Scholar 

  • Fanger CM, Rauer H, Neben AL, Miller MJ, Rauer H, Wulff H, Rosa JC, Ganellin CR, Chandy KG, Cahalan MD (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem 276(15):12249–12256

    PubMed  CAS  Google Scholar 

  • Fernandes-Santos C, de Souza Mendonça L, Mandarim-de-Lacerda CA (2009) Favorable cardiac and aortic remodeling in olmesartan-treated spontaneously hypertensive rats. Heart Vessels 24:219–227

    Google Scholar 

  • Fioretti B, Pietrangelo T, Catacuzzeno L, Franciolini F (2005) Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblsts and is downregulated during myogenesis. Am J Physiol 289:C89-C96

    CAS  Google Scholar 

  • Folkow B (1995) Integration of hypertension research in the era of molecular biology. J Hypertens 13:5–18

    PubMed  CAS  Google Scholar 

  • Frid MG, Dempsey EC, Durmowicz AG, Stenmark KR (1997) Smooth muscle cell heterogeneity in pulmonary and systemic vessels. Importance in vascular disease. Arterioscler Thromb Vasc Biol 17:1203–1209

    PubMed  CAS  Google Scholar 

  • Furukawa T, Yamane T, Terai T, Katayama Y, Hirakoka M (1996) Functional linkage of the cardiac ATP-sensitive K+ channel to the actin cytoskeleton. Pflügers Arch 431:504–512

    PubMed  CAS  Google Scholar 

  • Gardos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30(3):653–654

    PubMed  CAS  Google Scholar 

  • Gauthier KM, Spitzbarth N, Edwards EM, Campbell WB (2004) Apamin-sensitive K+ currents mediate arachidonic acid-induced relaxations of rabbit aorta. Hypertension 43:413–419

    PubMed  CAS  Google Scholar 

  • Gauthier KM, Chawengsub Y, Goldman DH, Conrow RE, Anjaiah S, Falck JR, Campbell WB (2008) 1(R),12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid: an endothelium-derived 15-lipoxygenase metabolite that relaxes rabbit aorta. Am J Physiol Heart Circ Physiol 294:H1467–H1472

    PubMed  CAS  Google Scholar 

  • Gebremedhin D, Kaldunski M, Jacobs ER, Harder DR, Roman RJ (1996) Coexistence of two types of calcium activated potassium channels in rat renal arterioles. Am J Physiol 270:F69–F81

    PubMed  CAS  Google Scholar 

  • Gerlach AC, Gangopadhyay NN, Devor DC (2000) Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1. J Biol Chem 275:585–598

    PubMed  CAS  Google Scholar 

  • Gerlach AC, Syme CA, Giltinan L, Adelman JP, Devors DC (2001) ATP-dependent activation of the intermediate conductance, Ca2+-activated K+ channel, hIK1, is conferred by a C-terminal domain. J Biol Chem 276:10963–10970

    CAS  Google Scholar 

  • Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275:37137–37149

    PubMed  CAS  Google Scholar 

  • Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, Kohler R (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis In vivo. Arterioscler Thromb Vasc Biol 25:704–709

    PubMed  CAS  Google Scholar 

  • Gribkoff VK, Starett JE, Jr, Dworetzky SI (2001) Maxi-K potassium channels: form, function and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist 7:166–177

    PubMed  CAS  Google Scholar 

  • Guo DF, Sun YL, Hamet P, Inagami T (2001) The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res 11:165–180

    PubMed  CAS  Google Scholar 

  • Gurantz D, Cowling RT, Varki N, Frikovsky E, Moore CD, Greenberg BH (2005) IL-1b and TNF-a upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J Mol Cell Cardiol 38:505–515

    PubMed  CAS  Google Scholar 

  • Gutman GA, Chandy GK, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O’Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS; International Union of Pharmacology (2003) International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacol Rev 55:583–586

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Hayabuchi Y, Davies NW, Standen NB (2001a) Angiotensin II inhibits rat arterial KATP channels by inhibiting steady-state protein kinase A activity and activating protein kinase Ce. J Physiol 530:193–205

    CAS  Google Scholar 

  • Hayabuchi Y, Standen NB, Davies NW (2001b) Angiotensin II inhibits and alters kinetics of voltage-gated K+ channels of rat arterial smooth muscle. Am J Physiol 281:H2480–2489

    CAS  Google Scholar 

  • Hayabuchi Y, Nakaya Y, Yasui S, Mawatari K, Mori K, Suzuki M, Kagami S (2006) Angiotensin II activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. J Mol Cell Cardiol 41:972–979

    PubMed  CAS  Google Scholar 

  • Hayabuchi Y, Nakaya Y, Mawatari K, Inoue M, Sakata M, Kagami S (2011) Cell membrane stretch activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells. Heart Vessels 26:91–100

    PubMed  Google Scholar 

  • Hayashi M, Kunii C, Takahata T, Ishikawa T (2004) ATP-dependent regulation of SK4/IK1-like currents in rat submandibular acinar cells: possible role of cAMP-dependent protein kinase. Am J Physiol 286:C635–646

    CAS  Google Scholar 

  • Hazelton B, Mitchell B, Tupper J (1979) Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. J Cell Biol 83:487–498

    PubMed  CAS  Google Scholar 

  • Hosokawa H, Aiuchi S, Kambe T, Hagiwara Y, Kubo T (2002) Mechanical stretch-induced mitogen-activated protein kinase activation is mediated via angiotensin and endothelin systems in vascular smooth muscle cells. Biol Pharm Bull 25:1588–1592

    PubMed  CAS  Google Scholar 

  • Hougaard C, Eriksen BL, Jørgensen S, Johansen TH, Dyhring T, Madsen LS,, Strøbaek D, Christophersen P (2007) Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Br J Pharmacol 151:655–665

    PubMed  CAS  Google Scholar 

  • Ingber DE. Tensegrity (1997) The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656

    PubMed  CAS  Google Scholar 

  • Jensen BS, Strøbaek D, Olesen SP, Christophersen P (2001) The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2(4):401–422

    PubMed  CAS  Google Scholar 

  • Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94:11013–11018

    PubMed  CAS  Google Scholar 

  • Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC (1999) hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem 274:14838–14849

    PubMed  CAS  Google Scholar 

  • Koegel H, Alzheimer C (2001) Expression and biological significance of Ca2+-activated ion channels in human keratinocytes. FASEB J 15(1):145–154

    PubMed  CAS  Google Scholar 

  • Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996). Small-conductance calcium-activated K+ channels from mammalian brain. Science 273:1709–1714

    PubMed  Google Scholar 

  • Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125

    PubMed  Google Scholar 

  • Kosako H, Gotoh Y, Matsuda S, Ishikawa M, Nishida E (1992) Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation. EMBO J 11:2903–2908

    PubMed  CAS  Google Scholar 

  • Kubo T, Hosokawa H, Kambe T, Fukumori R (2000) Angiotensin II mediates pressure loading – induced mitogen-activated protein kinase activation in isolated rat aorta. Eur Pharmacol 391:281–287

    CAS  Google Scholar 

  • Latorre R, Brauchi S (2006). Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biol Res 39:385–401

    PubMed  CAS  Google Scholar 

  • Latorre R, Oberhauser A, Labarca P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu Rev Physiol 51:385–99

    PubMed  CAS  Google Scholar 

  • Lepple-Wienhues A, Berweck S, Böhmig M, Leo CP, Meyling B, Garbe C, Wiederholt M (1996) K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol 151:149–157

    PubMed  CAS  Google Scholar 

  • Leuranguer V, Gluais P, Vanhoutte PM, Verbeuren TJ, Félétou M (2008) Openers of calcium-activated potassium channels and endothelium-dependent hyperpolarizations in the guinea pig carotid artery. Naunyn Schmiedebergs Arch Pharmacol 377:101–109

    PubMed  CAS  Google Scholar 

  • Li C, Wernig F, Leitges M, Hu Y, Xu Q (2003) Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB J 17:2106–2108

    PubMed  CAS  Google Scholar 

  • Liegeois JF, Mercier F, Graulich A, Graulich-Lorge F, Scuvee-Moreau J, Setin V (2003) Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr Med Chem 10:625–647

    PubMed  CAS  Google Scholar 

  • Lucchesi PA, Bell JM, Willis LS, Byron KL, Corson MA, Berk BC (1996) Ca2+-dependent mitogen-activated protein kinase activation in spontaneously hypertensive rat vascular smooth muscle defines a hypertensive signal transduction phenotype. Circ Res 78:962–970

    PubMed  CAS  Google Scholar 

  • Maher AD, Kuchel PW (2003) The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes. Int J Biochem Cell Biol 35(8):1182–97

    PubMed  CAS  Google Scholar 

  • Matsusaka T, Ichikawa I (1997) Biological functions of angiotensin and its receptors. Annu Rev Physiol 59:395–412

    PubMed  CAS  Google Scholar 

  • McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–40

    PubMed  CAS  Google Scholar 

  • Meera P, Wallner M, Toro L (2001) Molecular biology of highconductance, Ca2+-activated potassium channels. In: Archer S, Rush N (eds). Potassium Channels in Cardiovascular Biology. Kluwer Academic/Plenium Publishers: New York, pp 49–70

    Google Scholar 

  • Nardi A, Olesen SP (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15:1126–1146

    PubMed  CAS  Google Scholar 

  • Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–822

    PubMed  CAS  Google Scholar 

  • Nelson M, Cheng H, Rubart M, Santana L, Bonev A, Knot H, Lederer W (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    PubMed  CAS  Google Scholar 

  • Neylon CB, Avdonin PV, Dilley RJ, Larsen MA, Tkachuk VA, Bobik A (1994a) Different electrical responses to vasoactive agonists in morphologically distinct smooth muscle cell types. Circ Res 75:733–741

    CAS  Google Scholar 

  • Neylon CB, Avdonin PV, Larsen MA, Bobik A (1994b) Rat aortic smooth muscle cells expressing charybdotoxin-sensitive potassium channels exhibit enhanced proliferative responses. Clin Exp Pharmacol Physiol 21:117–120

    CAS  Google Scholar 

  • Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH (1999) Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: relationship between Kca channel diversity and smooth muscle cell function. Circ Res 85:e33–43

    PubMed  CAS  Google Scholar 

  • Nilius B, Wohlrab W (1992) Potassium channels and regulation of proliferation of human melanoma cells. J Physiol 445:537–548

    PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H, Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N (2001) Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether.a-gogo K+. Receptors Channels 7(5):345–56

    PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+channels in breast cancer cells: association with cell cycle progression. Am J Physiol 287:C125-C134

    CAS  Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  • Pedarzini P, D’hoedt D, Doorty KB, Wadsworth JDF, Joseph JS, Jeyaseelan K, Kini RM, Gadre SV, Sapatnekar SM, Stocker M, Strong PN (2002) Tapamin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J Biol Chem 277:46101–46109

    Google Scholar 

  • Pena TL, Chen SH, Konieczny SF, Rane SG (2000) Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK Is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem 275:13677–13682

    PubMed  CAS  Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodqett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674

    PubMed  CAS  Google Scholar 

  • Quignard JF, Félétou M, Edwards G, Duhault J, Weston AH, Vanhoutte PM (2000) Role of endothelial cell hyperpolarization in EDHFmediated responses in the guinea-pig carotid artery. Br J Pharmacol 129:1103–1112

    PubMed  CAS  Google Scholar 

  • Reeve HL, Weir EK, Archer SL, Cornfield DN (1998) A maturational shift in pulmonary K1 channels, from Ca2+ sensitive to voltage dependent. Am J Physiol 275:L1019–1025

    PubMed  CAS  Google Scholar 

  • Remillard CV, Yuan JX (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286(1):L49–67

    PubMed  CAS  Google Scholar 

  • Rufo PA, Merlin D, Riegler M, Ferguson-Maltzman MH, Dickinson BL, Brugnara C, Alper SL, Lencer WI (1997) The antifungal antibiotic, clotrimazole, inhibits chloride secretion by human intestinal T84 cells via blockade of distinct basolateral K+ conductances. Demonstration of efficacy in intact rabbit colon and in an in vivo mouse model of cholera. J Clin Invest 100(12):3111–3120

    PubMed  CAS  Google Scholar 

  • Saito T, Fujiwara Y, Fujiwara R, Hasegawa H, Kibira S, Miura H, Miura M (2002) Role of augmented expression of intermediate-conductance Ca2+-activated K+ channels in postischaemic heart. Clin Exp Pharmacol Physiol 29:324–329

    PubMed  CAS  Google Scholar 

  • Sartore S, Chiavegato A, Franch R, Faggin E, Pauletto P (1997) Myosin gene expression and cell phenotypes in vascular smooth muscle during development, in experimental models, and in vascular disease. ArteriosclerThromb Vasc Biol 17:1210–1215

    CAS  Google Scholar 

  • Schilling T, Eder C (2007) TRAM-34 inhibits nonselective cation channels. Pflugers Arch 454:559–563

    PubMed  CAS  Google Scholar 

  • Schwab A (2001) Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol 28:F739-F747

    Google Scholar 

  • Setoguchi M, Ohya Y, Abe I, Fujishima M (1997) Stretch-activated whole-cell currents in smooth muscle cells from mesenteric resistance artery of guinea-pig. J Physiol 501:343–353

    PubMed  CAS  Google Scholar 

  • Shepherd MC, Duffy SM, Harris T, Cruse G, Schuliga M, Brightling CE, Neylon CB, Bradding P, Stewart AG (2007) KCa3.1 Ca2+activated K+ channels regulate human airway smooth muscle proliferation. Am J Respir Cell Mol Biol 37(5):525–531

    PubMed  CAS  Google Scholar 

  • Shieh C-C, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases and therapeutic opportunities. Pharmacol Rev 52:557–593

    PubMed  CAS  Google Scholar 

  • Si H, Grgic I, Heyken WT, Maier T, Hoyer J, Reusch HP, Kohler R (2006) Mitogenic modulation of Ca2+-activated K+ channels in proliferating A7r5 vascular smooth muscle cells. Br J Pharmacol 148:909–917

    PubMed  CAS  Google Scholar 

  • Stocker M (2004) Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5(10):758–770

    PubMed  CAS  Google Scholar 

  • Strøbaek D, Joergensen TD, Christophersen P, Ahring PK, Olesen SP (2000) Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK 293 cells. Br J Pharmacol 129:627–630

    Google Scholar 

  • Strøbaek D, Teuber L, Jørgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B (2004) Activation of human IK and SK Ca2+-activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 1665:1–5

    PubMed  Google Scholar 

  • Sturgill TW, Ray LB, Erikson E, Maller JL (1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715–718

    PubMed  CAS  Google Scholar 

  • Terata Y, Saito T, Fujiwara Y, Hasegawa H, Miura H, Watanabe H, Chiba Y, Kibira S, Miura M (2003) Pitavastatin inhibits upregulation of intermediate conductance calcium-activated potassium channels and coronary arteriolar remodeling induced by long-term blockade of nitric oxide synthesis. Pharmacology 68:169–176

    PubMed  CAS  Google Scholar 

  • Tharp DL, Wamhoff BR, Turk JR, Bowles DK (2006) Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 291:H2493–H2503

    PubMed  CAS  Google Scholar 

  • Tharp DL, Wamhoff BR, Wulff H, Raman G, Cheong A, Bowles DK (2008) Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol 28:1084–1089

    PubMed  CAS  Google Scholar 

  • Toro L, Amador M, Staefani E (1990) ANG II inhibits calcium-activated potassium channels from coronary smooth muscle in lipid bilayers. Am J Physiol 258:H912–H915

    PubMed  CAS  Google Scholar 

  • Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–329

    PubMed  CAS  Google Scholar 

  • Verheugen JA, Le Deist F, Devignot V, Korn H (1997) Enhancement of calcium signaling and proliferation responses in activated human T lymphocytes. Inhibitory effects of K+ channel block by charybdotoxin depend on the T cell activation state. Cell Calcium 21:1–17

    PubMed  CAS  Google Scholar 

  • Williams B (1998) Mechanical influences on vascular smooth muscle cell function. J Hypertens 16:1921–1926

    PubMed  CAS  Google Scholar 

  • Wilson DP, Saward L, Zahradka P, Cheung PK (1999) Angiotensin II receptor antagonists prevent neointimal proliferation in a porcine coronary artery organ culture model. Cardiovasc Res 42:761–772

    PubMed  CAS  Google Scholar 

  • Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154(2):91–107

    PubMed  CAS  Google Scholar 

  • Wonderlin WF, Woodfork KA, Strobl JS (1995) Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 165(1):177–185

    PubMed  CAS  Google Scholar 

  • Woodfork KA, Wonderlin WF, Peterson VA, Strobl JS (1995) Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol 162(2):163–171

    PubMed  CAS  Google Scholar 

  • Wulf A, Schwab A (2002) Regulation of a calcium-sensitive K+ channel (cIK1) by protein kinase C. J Membr Biol 187:71–79

    PubMed  CAS  Google Scholar 

  • Wulff H, Miller MJ, Haensel W, Grissner S, Cahalan MD, Chandy KG (2000) Design of potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA 97:8151–8156

    PubMed  CAS  Google Scholar 

  • Wulff H, Beeton C, Chandy KG (2003) Potassium channels as therapeutic targets for autoimmune disorders. Curr Opin Drug Discov Devel 6(5):640–647

    PubMed  CAS  Google Scholar 

  • Wulff H, Knaus HG, Pennington M, Chandy KG (2004) K+ Channel expression during B cell differentiation: Implications for immunomodulation and autoimmunity. J Immunol 173:776–786

    PubMed  CAS  Google Scholar 

  • Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediateconductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457

    PubMed  CAS  Google Scholar 

  • Wu X, Davis MJ (2001) Characterization of stretch-activated cation current in coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 280:H1751–H1761

    PubMed  CAS  Google Scholar 

  • Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium-gating in small-conductance calcium-activated potassium channels. Nature 395:503–507

    PubMed  CAS  Google Scholar 

  • Xu CQ, Brône B, Wicher D, Bozkurt O, Lu WY, Huys I, Han YH, Tytgat J, Van Kerkhove E, Chi CW (2004) BmBKTx1, a novel Ca2+-activated K+ channel blocker purified from the Asian scorpion Buthus martensi Karsch. J Biol Chem 279:34562–34569

    PubMed  CAS  Google Scholar 

  • Zeng H, Gordon EA, Lin Z, Lozinskaya IM, Willette RN, Xu X (2008) 1-[1-hexyl-6-(methyloxy)-1H-indazol-3-yl]-2-methyl-1-propanone (HMIMP), a potent and highly selective small molecule blocker of the large-conductance voltage-gated and calcium-dependent K+ channel. J Pharmacol Exp Ther 327:168–177

    PubMed  CAS  Google Scholar 

  • Zhou XB, Ruth P, Schlossmann J, Hofmann F, Korth M (1996) Protein phosphatase 2 A is essential for the activation of Ca2+-activated K+ currents by cGMP-dependent protein kinase in tracheal smooth muscle and Chinese hamster ovary cells. J Biol Chem 271:19760–19767

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Hayabuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hayabuchi, Y., Sakata, M., Ohnishi, T., Kagami, S. (2012). Mechanical Stretch and Intermediate-Conductance Ca2+-Activated K+ Channels in Arterial Smooth Muscle Cells. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_5

Download citation

Publish with us

Policies and ethics