Skip to main content
Log in

Temperature solutions due to time-dependent moving-line-heat sources

Temperaturfeldermittlung für zeitabhängige, wandernde, linienförmige Wärmequellen

  • Originals
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A closed-form model for the computation of temperature distribution in an infinitely extended isotropic body with a time-dependent moving-line-heat sources is discussed. The temperature solutions are presented for the sources of the forms: (i)\(\dot Q_1 (t) = \dot Q_0 \exp ( - \lambda t)\), (ii)\(\dot Q_2 (t) = \dot Q_0 (t/t^ \star )\exp ( - \lambda t)\), and\(\dot Q_3 (t) = \dot Q_0 [1 + a\cos (\omega t)]\), whereλ andω are real parameters andt⋆ characterizes the limiting time. The reduced (or dimensionless) temperature solutions are presented in terms of the generalized representation of an incomplete gamma function Γ (α,x;b) and its decompositionsC Γ andS Γ. It is also demonstrated that the present analysis covers the classical temperature solution of a constant strength source under quasi-steady-state situations.

Zusammenfassung

Es wird ein in geschlossener Form beschreibbares Modell zur Berechnung der Temperaturverteilung in einem unendlich ausgedehnten, isotropen Körper mit zeitabhängiger, wandernder, linienförmiger Wärmequelle untersucht, wobei sich die Lösungen auf folgende Zeitfunktionen für die Wärmequelle beziehen: (1)\(\dot Q_1 (t) = \dot Q_0 \exp ( - \lambda t)\); (2)\(\dot Q_2 (t) = \dot Q_0 (t/t^ \star )\exp ( - \lambda t)\) und (3)\(\dot Q_3 (t) = \dot Q_0 [1 + a\cos (\omega t)]\). Hierin sindλ undω reelle Parameter;t⋆ charakterisiert eine Grenzzeit. Die normierten Temperaturfeldlösungen werden als Funktionen einer unvollständigen Gamma-Funktion Γ(α,x;b) und hirer DekomposiertenC Γ undS Γ angegeben. Es läßt sich zeigen, daß die mitgeteilten Lösungen das bekannte Ergebnis für eine Quelle konstanter Energielieferung im quasistationären Fall einschließen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

controlling factor of steady-periodic oscillations

C p :

specific heat at constant pressure, [kJ/(kg K)]

C Γ :

decomposition function

Fo :

Fourier number (Fo=αt/r 2)

k :

thermal conductivity, [W/(mK)]

S Γ :

decomposition function

t :

time, [s]

T :

temperature, [K]

r :

distance from the line-heat source, [m]

u :

source velocity, [m/s]

V :

reduced velocity (V=ut/r)

α :

thermal diffusivity (α=k/ρC p ), [m2/s]

β :

dimensionless parameter [β=(V/4Fo)2λ/4Fo]

β 0 :

dimensionless parameter [β 0=(V/4Fo)2]

Γ :

generalized incomplete gamma function

θ :

reduced (or dimensionless) temperature

ρ :

density, [kg/m3]

τλ :

reduced (or dimensionless) time (τλt)

τ ω :

reduced (or dimensionless) time (τ ω =ωt)

1:

line-heat source of strength\(\dot Q_0 \exp ( - \lambda t)\)

11:

constant strength, quasi-steady case

2:

line-heat source of strength\(\dot Q_0 (t/t^ \star )\exp ( - \lambda t)\)

21:

pulse-type strength, quasi-steady case

3:

line-heat source of strength\(\dot Q_0 [1 + a\cos (\omega t)]\)

31:

quasi-steady case

References

  1. Spraragen, W.;Claussen, G.E.: Temperature distribution during welding — A review of the literature to January 1, 1937. Welding J. Res. Sup. 16 (1937) 4–10

    Google Scholar 

  2. Rosenthal, D.: The theory of moving sources of heat and its application to metal treatments, Trans. Am. Soc. Mech. Engrs. 68 (1946) 849–866

    Google Scholar 

  3. Rohsenow, W.M.;Hartnett, J.P.;Ganic, E.N.: Handbook of Heat Transfer Fundamentals (2nd ed.), New York: McGraw-Hill 1985

    Google Scholar 

  4. Carslaw, H.S.;Jaeger, J.C.: Conduction of Heat in Solids, London: Oxford University Press 1959

    Google Scholar 

  5. Grigull, U.;Sandner, H.: Heat Conduction. (English Translation ed. by J. Kestin) Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  6. Chaudhry, M.A.;Zubair, S.M.: Analytic study of temperature solutions due to gamma-type moving-point-heat sources. Int. J. Heat and Mass Transfer 36 (1993) 1633–1637

    Google Scholar 

  7. Zubair, S.M.;Chaudhry, M.A.: Temperature solutions due to steady, periodic-type, moving-point-heat sources in an infinite medium. Int. Comm. in Heat and Mass Transfer 21 (1994) 207–215

    Google Scholar 

  8. Chaudhry, M.A.;Zubair, S.M.: Generalized incomplete gamma functions with applications. J. of Comp. and Appl. Math. 55 (1994) 99–124

    MathSciNet  Google Scholar 

  9. Chaudhry, M.A.;Zubair, S.M.: On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms. J. of Comp. and Appl. Math. 59 (1995) 253–284

    MathSciNet  Google Scholar 

  10. Chaudhry, M.A.;Zubair, S.M.: Temperature and heat flux, solutions due to steady and non-steady periodic-type surface temperatures in a semi-infinite solid. Wärme-und Stoffübertragung 29 (1994) 205–210

    Google Scholar 

  11. Zubair, S.M.;Chaudhry, M.A.: Heat Conduction in a semi-infinite solid subject to steady and non-steady periodic-type surface-heat fluxes. Int. J. Heat and Mass Transfer 38 (1995) 3393–3399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors acknowledge the support provided by King Fahd University of Petroleum and Minerals under Research Project MS/GAMMA/171.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubair, S.M., Chaudhry, M.A. Temperature solutions due to time-dependent moving-line-heat sources. Heat and Mass Transfer 31, 185–189 (1996). https://doi.org/10.1007/BF02333318

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02333318

Keywords

Navigation